File size: 6,837 Bytes
eea2924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import os 
import json 
import requests
from thinking_routines import thinking_routine_prompt, thinking_routine_examples

#Streaming endpoint 
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"

#Huggingface provided GPT4 OpenAI API Key 
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") 

#Inferenec function
def predict(system_msg, inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):  

    headers = {
    "Content-Type": "application/json",
    "Authorization": f"Bearer {OPENAI_API_KEY}"
    }
    print(f"system message is ^^ {system_msg}")
    if system_msg.strip() == '':
        initial_message = [{"role": "user", "content": f"{inputs}"},]
        multi_turn_message = []
    else:
        initial_message= [{"role": "system", "content": system_msg},
                   {"role": "user", "content": f"{inputs}"},]
        multi_turn_message = [{"role": "system", "content": system_msg},]
        
    if chat_counter == 0 :
        payload = {
        "model": "gpt-4",
        "messages": initial_message , 
        "temperature" : 1.0,
        "top_p":1.0,
        "n" : 1,
        "stream": True,
        "presence_penalty":0,
        "frequency_penalty":0,
        }
        print(f"chat_counter - {chat_counter}")
    else: #if chat_counter != 0 :
        messages=multi_turn_message # Of the type of - [{"role": "system", "content": system_msg},]
        for data in chatbot:
          user = {}
          user["role"] = "user" 
          user["content"] = data[0] 
          assistant = {}
          assistant["role"] = "assistant" 
          assistant["content"] = data[1]
          messages.append(user)
          messages.append(assistant)
        temp = {}
        temp["role"] = "user" 
        temp["content"] = inputs
        messages.append(temp)
        #messages
        payload = {
        "model": "gpt-4",
        "messages": messages, # Of the type of [{"role": "user", "content": f"{inputs}"}],
        "temperature" : temperature, #1.0,
        "top_p": top_p, #1.0,
        "n" : 1,
        "stream": True,
        "presence_penalty":0,
        "frequency_penalty":0,}

    chat_counter+=1

    history.append(inputs)
    print(f"Logging : payload is - {payload}")
    # make a POST request to the API endpoint using the requests.post method, passing in stream=True
    response = requests.post(API_URL, headers=headers, json=payload, stream=True)
    print(f"Logging : response code - {response}")
    token_counter = 0 
    partial_words = "" 

    counter=0
    for chunk in response.iter_lines():
        #Skipping first chunk
        if counter == 0:
          counter+=1
          continue
        # check whether each line is non-empty
        if chunk.decode() :
          chunk = chunk.decode()
          # decode each line as response data is in bytes
          if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
              partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
              if token_counter == 0:
                history.append(" " + partial_words)
              else:
                history[-1] = partial_words
              chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ]  # convert to tuples of list
              token_counter+=1
              yield chat, history, chat_counter, response  # resembles {chatbot: chat, state: history}  
                   
#Resetting to blank
def reset_textbox():
    return gr.update(value='')

#to set a component as visible=False
def set_visible_false():
    return gr.update(visible=False)

#to set a component as visible=True
def set_visible_true():
    return gr.update(visible=True)



title = """<h1 align="center">πŸŽ‰πŸ“š Super Learning Buddy for Primary School Students πŸ€–βœ¨</h1>"""

#Using info to add additional information about System message in GPT4
system_msg_info = """πŸ€–βœ¨ Choose your own learning buddy from the list! πŸ“šπŸš€"""

# Modifying existing Gradio Theme
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue", neutral_hue="blue",
                      text_size=gr.themes.sizes.text_lg)                

with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""",
                      theme=theme) as demo:
    gr.HTML(title)
    gr.HTML("""<h3 align="center">πŸŽ‰πŸš€ Meet your fun Learning Buddy, ready for all thinking adventures! 🧠✨</h1>""")
    
    with gr.Column(elem_id = "col_container"):
        #GPT4 API Key is provided by Huggingface 
        with gr.Accordion(label="Select you Coach:", open=False):
            system_msg = gr.Textbox(label="Choose the type of Coach to help guide you", info = system_msg_info, value="")
            accordion_msg = gr.HTML(value="🚧 To set System message you will have to refresh the app", visible=False)

        with gr.Accordion(label="Examples of Coaches using thinking routines:", open=False):
            gr.Examples(
                examples=[[thinking_routine_prompt(subject, routine)] for subject, routine in thinking_routine_examples],
                inputs=system_msg,
            )

        chatbot = gr.Chatbot(label='Learning Buddy', elem_id="chatbot")
        inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter")
        state = gr.State([]) 

        with gr.Row():
            with gr.Column(scale=7):
                b1 = gr.Button().style(full_width=True)
            with gr.Column(scale=3):
                server_status_code = gr.Textbox(label="Status code from OpenAI server", )
    
        #top_p, temperature
        with gr.Accordion("Parameters", open=False):
            top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
            temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
            chat_counter = gr.Number(value=0, visible=False, precision=0)

    #Event handling
    inputs.submit( predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],)  #openai_api_key
    b1.click( predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],)  #openai_api_key
    
    inputs.submit(set_visible_false, [], [system_msg])
    b1.click(set_visible_false, [], [system_msg])
    inputs.submit(set_visible_true, [], [accordion_msg])
    b1.click(set_visible_true, [], [accordion_msg])
    
    b1.click(reset_textbox, [], [inputs])
    inputs.submit(reset_textbox, [], [inputs])
        
demo.queue(max_size=99, concurrency_count=20).launch(share=True)