# app.py
import gradio as gr
import openai
import os
import AlpsData # Importing the AlpsData module
import base64
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
openai.api_key = OPENAI_API_KEY
def image_to_base64(img_path):
with open(img_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode('utf-8')
img_base64 = image_to_base64("AlpsSBC.JPG")
img_html = f''
def predict(question_choice, feedback_level, audio):
# Transcribe the audio using Whisper
with open(audio, "rb") as audio_file:
transcript = openai.Audio.transcribe("whisper-1", audio_file)
message = transcript["text"] # This is the transcribed message from the audio input
# Generate the prompt based on the feedback level
feedback_prompt = AlpsData.generate_prompt(feedback_level)
# Determine question number based on question_choice
question_number = AlpsData.questions.index(question_choice) + 1 # New line
# Generate the system message based on the question number
system_message = AlpsData.generate_system_message(question_number, feedback_level) # Updated line to include feedback_level
# Reference to the picture description from AlpsData.py
picture_description = AlpsData.description
# Determine whether to include the picture description based on the question choice
picture_description_inclusion = f"""
For the first question, ensure your feedback refers to the picture description provided:
{picture_description}
""" if question_choice == AlpsData.questions[0] else ""
# Construct the conversation with the system and user's message
conversation = [
{
"role": "system",
"content": f"""
You are an expert English Language Teacher in a Singapore Primary school, directly guiding a Primary 6 student in Singapore.
The student is answering the question: '{question_choice}'.
{picture_description_inclusion}
{system_message}
"""
},
{"role": "user", "content": message}
]
response = openai.ChatCompletion.create(
model='gpt-3.5-turbo',
messages=conversation,
temperature=0.6,
max_tokens=550, # Limiting the response to 550 tokens
stream=True
)
partial_message = ""
for chunk in response:
if len(chunk['choices'][0]['delta']) != 0:
partial_message = partial_message + chunk['choices'][0]['delta']['content']
yield partial_message
iface = gr.Interface(
fn=predict,
inputs=[
gr.Radio(AlpsData.questions, label="Choose a question", default=AlpsData.questions[0]), # Updated reference
gr.Radio(["Brief Feedback", "Moderate Feedback", "Comprehensive Feedback"], label="Choose a feedback level", default="Brief Feedback"),
gr.inputs.Audio(source="microphone", type="filepath")
],
outputs=gr.inputs.Textbox(),
description=img_html + '''