File size: 9,333 Bytes
a34dbd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145d19
a34dbd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145d19
a34dbd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a775d6d
 
 
 
 
 
 
 
 
 
 
 
2145d19
a34dbd2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
import os 
import json 
import requests

#Streaming endpoint 
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"

#Huggingface provided GPT4 OpenAI API Key 
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") 

#Inferenec function
def predict(system_msg, inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):  

    headers = {
    "Content-Type": "application/json",
    "Authorization": f"Bearer {OPENAI_API_KEY}"
    }
    print(f"system message is ^^ {system_msg}")
    if system_msg.strip() == '':
        initial_message = [{"role": "user", "content": f"{inputs}"},]
        multi_turn_message = []
    else:
        initial_message= [{"role": "system", "content": system_msg},
                   {"role": "user", "content": f"{inputs}"},]
        multi_turn_message = [{"role": "system", "content": system_msg},]
        
    if chat_counter == 0 :
        payload = {
        "model": "gpt-4",
        "messages": initial_message , 
        "temperature" : 1.0,
        "top_p":1.0,
        "n" : 1,
        "stream": True,
        "presence_penalty":0,
        "frequency_penalty":0,
        }
        print(f"chat_counter - {chat_counter}")
    else: #if chat_counter != 0 :
        messages=multi_turn_message # Of the type of - [{"role": "system", "content": system_msg},]
        for data in chatbot:
          user = {}
          user["role"] = "user" 
          user["content"] = data[0] 
          assistant = {}
          assistant["role"] = "assistant" 
          assistant["content"] = data[1]
          messages.append(user)
          messages.append(assistant)
        temp = {}
        temp["role"] = "user" 
        temp["content"] = inputs
        messages.append(temp)
        #messages
        payload = {
        "model": "gpt-4",
        "messages": messages, # Of the type of [{"role": "user", "content": f"{inputs}"}],
        "temperature" : temperature, #1.0,
        "top_p": top_p, #1.0,
        "n" : 1,
        "stream": True,
        "presence_penalty":0,
        "frequency_penalty":0,}

    chat_counter+=1

    history.append(inputs)
    print(f"Logging : payload is - {payload}")
    # make a POST request to the API endpoint using the requests.post method, passing in stream=True
    response = requests.post(API_URL, headers=headers, json=payload, stream=True)
    print(f"Logging : response code - {response}")
    token_counter = 0 
    partial_words = "" 

    counter=0
    for chunk in response.iter_lines():
        #Skipping first chunk
        if counter == 0:
          counter+=1
          continue
        # check whether each line is non-empty
        if chunk.decode() :
          chunk = chunk.decode()
          # decode each line as response data is in bytes
          if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
              partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
              if token_counter == 0:
                history.append(" " + partial_words)
              else:
                history[-1] = partial_words
              chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ]  # convert to tuples of list
              token_counter+=1
              yield chat, history, chat_counter, response  # resembles {chatbot: chat, state: history}  
                   
#Resetting to blank
def reset_textbox():
    return gr.update(value='')

#to set a component as visible=False
def set_visible_false():
    return gr.update(visible=False)

#to set a component as visible=True
def set_visible_true():
    return gr.update(visible=True)

title = """<h1 align="center">🔥English Teaching Assistant for Primary 6 Students +🚀Gradio-Streaming</h1>"""

#display message for themes feature
theme_addon_msg = """<center>🌟 Discover Gradio Themes with this Demo, featuring v3.22.0! Gradio v3.23.0 also enables seamless Theme sharing. You can develop or modify a theme, and send it to the hub using simple <code>theme.push_to_hub()</code>. 
<br>🏆Participate in Gradio's Theme Building Hackathon to exhibit your creative flair and win fabulous rewards! Join here - <a href="https://huggingface.co/Gradio-Themes" target="_blank">Gradio-Themes-Party🎨</a> 🏆</center>
"""

#Using info to add additional information about System message in GPT4
system_msg_info = """A conversation could begin with a system message to gently instruct the assistant. 
System message helps set the behavior of the AI Assistant. For example, the assistant could be instructed with 'You are a helpful assistant.'"""

#Modifying existing Gradio Theme
theme = gr.themes.Soft(primary_hue="zinc", secondary_hue="green", neutral_hue="green",
                      text_size=gr.themes.sizes.text_lg)                

with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""",
                      theme=theme) as demo:
    gr.HTML(title)
    gr.HTML("""<h3 align="center">🔥This application provides AI assistance for various English teaching roles in a Singapore Primary School for Primary 6 students. 🎉🥳🎉🙌</h1>""")
    gr.HTML(theme_addon_msg)
    gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/ChatGPT4?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''')

    with gr.Column(elem_id = "col_container"):
        #GPT4 API Key is provided by Huggingface 
        with gr.Accordion(label="System message:", open=False):
            system_msg = gr.Textbox(label="Instruct the AI Assistant to set its beaviour", info = system_msg_info, value="")
            accordion_msg = gr.HTML(value="🚧 To set System message you will have to refresh the app", visible=False)
        chatbot = gr.Chatbot(label='GPT4', elem_id="chatbot")
        inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter")
        state = gr.State([]) 
        with gr.Row():
            with gr.Column(scale=7):
                b1 = gr.Button().style(full_width=True)
            with gr.Column(scale=3):
                server_status_code = gr.Textbox(label="Status code from OpenAI server", )
    
        #top_p, temperature
        with gr.Accordion("Parameters", open=False):
            top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
            temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
            chat_counter = gr.Number(value=0, visible=False, precision=0)

    #Event handling
    inputs.submit( predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],)  #openai_api_key
    b1.click( predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],)  #openai_api_key
    
    inputs.submit(set_visible_false, [], [system_msg])
    b1.click(set_visible_false, [], [system_msg])
    inputs.submit(set_visible_true, [], [accordion_msg])
    b1.click(set_visible_true, [], [accordion_msg])
    
    b1.click(reset_textbox, [], [inputs])
    inputs.submit(reset_textbox, [], [inputs])

    # Fix the indentation here
    with gr.Accordion(label="Examples for System message:", open=False):
        gr.Examples(
            examples=[["You are an English Oral Coach for Primary 6 students. Help students improve their English speaking skills by providing helpful tips, correcting grammar, and giving advice on pronunciation."],
                      ["You are a Creative Writing Coach for Primary 6 students. Help students enhance their creative writing skills by providing tips on story ideas, improving vocabulary, and suggesting ways to make their stories more engaging."],
                      ["You are a Reading Comprehension Expert for Primary 6 students. Assist students in understanding reading passages and answering comprehension questions by offering strategies for finding the main idea, making inferences, and identifying key details."],
                      ["You are a Grammar Guru for Primary 6 students. Provide guidance to students on proper grammar usage, punctuation, and sentence structure to improve their written and spoken English."],
                      ["You are an English Vocabulary Builder for Primary 6 students. Help students expand their vocabulary by teaching them new words, explaining word meanings, and giving examples of how to use the words in context."],
                      ["You are a Listening Skills Mentor for Primary 6 students. Help students improve their listening skills by providing tips on active listening, understanding different accents, and comprehending spoken English in various contexts."],
                      ["You are a Pronunciation Expert for Primary 6 students. Assist students in refining their English pronunciation by focusing on intonation, stress, and the correct pronunciation of challenging sounds and words."],
                      ],
            inputs=system_msg,)

        
demo.queue(max_size=99, concurrency_count=20).launch(debug=True)