Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Prediction, Tables samples
Browse files- app.py +27 -25
- tables_dict.csv +300 -0
- tables_dict.pkl +3 -0
- utilities.py +7 -2
    	
        app.py
    CHANGED
    
    | @@ -1,6 +1,23 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
             
            import pandas as pd
         | 
| 3 | 
            -
            import  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 4 | 
             
            # # https://discuss.huggingface.co/t/issues-with-sadtalker-zerogpu-spaces-inquiry-about-community-grant/110625/10
         | 
| 5 | 
             
            # if os.environ.get("SPACES_ZERO_GPU") is not None:
         | 
| 6 | 
             
            #     import spaces
         | 
| @@ -11,23 +28,6 @@ import os | |
| 11 | 
             
            #             def wrapper(*args, **kwargs):
         | 
| 12 | 
             
            #                 return func(*args, **kwargs)
         | 
| 13 | 
             
            #             return wrapper
         | 
| 14 | 
            -
            import sys
         | 
| 15 | 
            -
            from qatch.connectors.sqlite_connector import SqliteConnector
         | 
| 16 | 
            -
            from qatch.generate_dataset.orchestrator_generator import OrchestratorGenerator
         | 
| 17 | 
            -
            from qatch.evaluate_dataset.orchestrator_evaluator import OrchestratorEvaluator
         | 
| 18 | 
            -
            from prediction import ModelPrediction
         | 
| 19 | 
            -
            import utils_get_db_tables_info
         | 
| 20 | 
            -
            import utilities as us
         | 
| 21 | 
            -
            import time
         | 
| 22 | 
            -
            import plotly.express as px
         | 
| 23 | 
            -
            import plotly.graph_objects as go
         | 
| 24 | 
            -
            import plotly.colors as pc
         | 
| 25 | 
            -
            import re
         | 
| 26 | 
            -
            import csv
         | 
| 27 | 
            -
            import numpy as np
         | 
| 28 | 
            -
            # @spaces.GPU
         | 
| 29 | 
            -
            # def model_prediction():
         | 
| 30 | 
            -
            #   pass
         | 
| 31 | 
             
            pnp_path = os.path.join(".", "evaluation_p_np_metrics.csv")
         | 
| 32 |  | 
| 33 | 
             
            js_func = """
         | 
| @@ -50,8 +50,8 @@ df_default = pd.DataFrame({ | |
| 50 | 
             
                'Age': [25, 30, 35],
         | 
| 51 | 
             
                'City': ['New York', 'Los Angeles', 'Chicago']
         | 
| 52 | 
             
            })
         | 
| 53 | 
            -
             | 
| 54 | 
            -
            models_path = "./models.csv"
         | 
| 55 |  | 
| 56 | 
             
            # Variabile globale per tenere traccia dei dati correnti
         | 
| 57 | 
             
            df_current = df_default.copy()
         | 
| @@ -176,7 +176,7 @@ with gr.Blocks(theme='shivi/calm_seafoam', css_paths='style.css', js=js_func) as | |
| 176 | 
             
                with gr.Row():
         | 
| 177 | 
             
                    with gr.Column(scale=1):
         | 
| 178 | 
             
                        gr.Image(
         | 
| 179 | 
            -
                            value=" | 
| 180 | 
             
                            show_label=False,
         | 
| 181 | 
             
                            container=False,
         | 
| 182 | 
             
                            interactive=False,
         | 
| @@ -652,10 +652,12 @@ with gr.Blocks(theme='shivi/calm_seafoam', css_paths='style.css', js=js_func) as | |
| 652 | 
             
                                    samples = us.generate_some_samples(input_data['data']['db'], row["tbl_name"])
         | 
| 653 | 
             
                                    prompt_to_send = us.prepare_prompt(input_data["prompt"], question, schema_text, samples)
         | 
| 654 | 
             
                                    #PREDICTION SQL
         | 
| 655 | 
            -
                                     | 
| 656 | 
            -
             | 
| 657 | 
            -
                                     | 
| 658 | 
            -
                                     | 
|  | |
|  | |
| 659 |  | 
| 660 | 
             
                                    end_time = time.time()
         | 
| 661 | 
             
                                    display_prediction = f"""<div class='loading' style='font-size: 1.7rem; font-family: 'Inter', sans-serif;'>>Predicted SQL:</div> 
         | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import sys
         | 
| 3 | 
            +
            import time
         | 
| 4 | 
            +
            import re
         | 
| 5 | 
            +
            import csv
         | 
| 6 | 
             
            import gradio as gr
         | 
| 7 | 
             
            import pandas as pd
         | 
| 8 | 
            +
            import numpy as np
         | 
| 9 | 
            +
            import plotly.express as px
         | 
| 10 | 
            +
            import plotly.graph_objects as go
         | 
| 11 | 
            +
            import plotly.colors as pc
         | 
| 12 | 
            +
            from qatch.connectors.sqlite_connector import SqliteConnector
         | 
| 13 | 
            +
            from qatch.generate_dataset.orchestrator_generator import OrchestratorGenerator
         | 
| 14 | 
            +
            from qatch.evaluate_dataset.orchestrator_evaluator import OrchestratorEvaluator
         | 
| 15 | 
            +
            from prediction import ModelPrediction
         | 
| 16 | 
            +
            import utils_get_db_tables_info
         | 
| 17 | 
            +
            import utilities as us
         | 
| 18 | 
            +
            # @spaces.GPU
         | 
| 19 | 
            +
            # def model_prediction():
         | 
| 20 | 
            +
            #   pass
         | 
| 21 | 
             
            # # https://discuss.huggingface.co/t/issues-with-sadtalker-zerogpu-spaces-inquiry-about-community-grant/110625/10
         | 
| 22 | 
             
            # if os.environ.get("SPACES_ZERO_GPU") is not None:
         | 
| 23 | 
             
            #     import spaces
         | 
|  | |
| 28 | 
             
            #             def wrapper(*args, **kwargs):
         | 
| 29 | 
             
            #                 return func(*args, **kwargs)
         | 
| 30 | 
             
            #             return wrapper
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 31 | 
             
            pnp_path = os.path.join(".", "evaluation_p_np_metrics.csv")
         | 
| 32 |  | 
| 33 | 
             
            js_func = """
         | 
|  | |
| 50 | 
             
                'Age': [25, 30, 35],
         | 
| 51 | 
             
                'City': ['New York', 'Los Angeles', 'Chicago']
         | 
| 52 | 
             
            })
         | 
| 53 | 
            +
            models_path = os.path.join(".", "models.csv")
         | 
| 54 | 
            +
            #models_path = "./models.csv"
         | 
| 55 |  | 
| 56 | 
             
            # Variabile globale per tenere traccia dei dati correnti
         | 
| 57 | 
             
            df_current = df_default.copy()
         | 
|  | |
| 176 | 
             
                with gr.Row():
         | 
| 177 | 
             
                    with gr.Column(scale=1):
         | 
| 178 | 
             
                        gr.Image(
         | 
| 179 | 
            +
                            value=os.path.join(".", "qatch_logo.png"),
         | 
| 180 | 
             
                            show_label=False,
         | 
| 181 | 
             
                            container=False,
         | 
| 182 | 
             
                            interactive=False,
         | 
|  | |
| 652 | 
             
                                    samples = us.generate_some_samples(input_data['data']['db'], row["tbl_name"])
         | 
| 653 | 
             
                                    prompt_to_send = us.prepare_prompt(input_data["prompt"], question, schema_text, samples)
         | 
| 654 | 
             
                                    #PREDICTION SQL
         | 
| 655 | 
            +
                                    if prompt_to_send == prompt_default:
         | 
| 656 | 
            +
                                        prompt_to_send = None
         | 
| 657 | 
            +
                                    response = predictor.make_prediction(question=question, db_schema=schema_text, model_name=model, prompt=f"{prompt_to_send}")
         | 
| 658 | 
            +
                                    prediction = response['response_parsed']
         | 
| 659 | 
            +
                                    price = response['cost']
         | 
| 660 | 
            +
                                    answer = response['response']
         | 
| 661 |  | 
| 662 | 
             
                                    end_time = time.time()
         | 
| 663 | 
             
                                    display_prediction = f"""<div class='loading' style='font-size: 1.7rem; font-family: 'Inter', sans-serif;'>>Predicted SQL:</div> 
         | 
    	
        tables_dict.csv
    ADDED
    
    | @@ -0,0 +1,300 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            Table: accountFraud
         | 
| 2 | 
            +
            hasothercards,housingstatus,dateofbirthdistinctemails4w,income,paymenttype,employmentstatus,creditriskscore,sessionlengthminutes,deviceos,emailisfree
         | 
| 3 | 
            +
            False,BD,3,0.5,AB,CC,230,5.07759998143027,linux,Paid
         | 
| 4 | 
            +
            False,BC,15,0.1,AD,CB,-40,4.0223824396911,other,Paid
         | 
| 5 | 
            +
            True,BC,7,0.9,AC,CA,215,3.749706225590873,windows,Paid
         | 
| 6 | 
            +
            False,BC,2,0.4,AC,CD,51,4.886676763177824,other,Paid
         | 
| 7 | 
            +
            False,BC,6,0.4,AB,CA,108,1.7508864007811145,other,Free
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            Table: shop
         | 
| 10 | 
            +
            Shop_ID,Name,Location,District,Number_products,Manager_name
         | 
| 11 | 
            +
            1,FC Haka,Valkeakoski,Tehtaan kenttä,3516,Olli Huttunen
         | 
| 12 | 
            +
            2,HJK,Helsinki,Finnair Stadium,10770,Antti Muurinen
         | 
| 13 | 
            +
            3,FC Honka,Espoo,Tapiolan Urheilupuisto,6000,Mika Lehkosuo
         | 
| 14 | 
            +
            4,FC Inter,Turku,Veritas Stadion,10000,Job Dragtsma
         | 
| 15 | 
            +
            5,FF Jaro,Jakobstad,Jakobstads Centralplan,5000,Mika Laurikainen
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            Table: airlines
         | 
| 18 | 
            +
            uid,Airline,Abbreviation,Country
         | 
| 19 | 
            +
            1,United Airlines,UAL,USA
         | 
| 20 | 
            +
            2,US Airways,USAir,USA
         | 
| 21 | 
            +
            3,Delta Airlines,Delta,USA
         | 
| 22 | 
            +
            4,Southwest Airlines,Southwest,USA
         | 
| 23 | 
            +
            5,American Airlines,American,USA
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            Table: fitnessTrackers
         | 
| 26 | 
            +
            brandname,devicetype,modelname,color,sellingprice,originalprice,display,rating,strapmaterial,averagebatterylife
         | 
| 27 | 
            +
            huami,Smartwatch,Amazfit Bip S,White ,4999.0,5999.0,AMOLED Display,4.0,Thermoplastic polyurethane,15
         | 
| 28 | 
            +
            GARMIN ,Smartwatch,Approach S62,"White, Black",46990.0,51990.0,OLED Display,4.1,Silicone,12
         | 
| 29 | 
            +
            SAMSUNG ,Smartwatch,Galaxy Classic 4,Black,32959.0,37999.0,AMOLED Display,4.6,Elastomer,14
         | 
| 30 | 
            +
            SAMSUNG ,Smartwatch,Galaxy Watch 4 LTE,Black,31999.0,34999.0,AMOLED Display,4.6,Elastomer,14
         | 
| 31 | 
            +
            APPLE,Smartwatch,Series 6 GPS + Cellular 40 mm Red Aluminium Case,Red,45690.0,49900.0,OLED Retina Display,4.5,Aluminium,1
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            Table: Ref_Template_Types
         | 
| 34 | 
            +
            Template_Type_Code,Template_Type_Description
         | 
| 35 | 
            +
            PPT,Presentation
         | 
| 36 | 
            +
            CV,CV
         | 
| 37 | 
            +
            AD,Advertisement
         | 
| 38 | 
            +
            PP,Paper
         | 
| 39 | 
            +
            BK,Book
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            Table: stadium
         | 
| 42 | 
            +
            Stadium_ID,Location,Name,Capacity,Highest,Lowest,Average
         | 
| 43 | 
            +
            1,Raith Rovers,Stark's Park,10104,4812,1294,2106
         | 
| 44 | 
            +
            2,Ayr United,Somerset Park,11998,2363,1057,1477
         | 
| 45 | 
            +
            3,East Fife,Bayview Stadium,2000,1980,533,864
         | 
| 46 | 
            +
            4,Queen's Park,Hampden Park,52500,1763,466,730
         | 
| 47 | 
            +
            5,Stirling Albion,Forthbank Stadium,3808,1125,404,642
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            Table: Student
         | 
| 50 | 
            +
            StuID,LName,Fname,Age,Sex,Major,Advisor,city_code
         | 
| 51 | 
            +
            1001,Smith,Linda,18,F,600,1121,BAL
         | 
| 52 | 
            +
            1002,Kim,Tracy,19,F,600,7712,HKG
         | 
| 53 | 
            +
            1003,Jones,Shiela,21,F,600,7792,WAS
         | 
| 54 | 
            +
            1004,Kumar,Dinesh,20,M,600,8423,CHI
         | 
| 55 | 
            +
            1005,Gompers,Paul,26,M,600,1121,YYZ
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            Table: Templates
         | 
| 58 | 
            +
            Template_ID,Version_Number,Template_Type_Code,Date_Effective_From,Date_Effective_To,Template_Details
         | 
| 59 | 
            +
            0,5,PP,2005-11-12 07:09:48,2008-01-05 14:19:28,
         | 
| 60 | 
            +
            1,9,PP,2010-09-24 01:15:11,1999-07-08 03:31:04,
         | 
| 61 | 
            +
            4,4,BK,2002-03-02 14:39:49,2001-04-18 09:29:52,
         | 
| 62 | 
            +
            6,2,PPT,1975-05-20 22:51:19,1992-05-02 20:06:11,
         | 
| 63 | 
            +
            7,8,PPT,1993-10-07 02:33:04,1975-07-16 04:52:10,
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            Table: employee
         | 
| 66 | 
            +
            Employee_ID,Name,Age,City
         | 
| 67 | 
            +
            1,George Chuter,23,Bristol
         | 
| 68 | 
            +
            2,Lee Mears,29,Bath
         | 
| 69 | 
            +
            3,Mark Regan,43,Bristol
         | 
| 70 | 
            +
            4,Jason Hobson,30,Bristol
         | 
| 71 | 
            +
            5,Tim Payne,29,Wasps
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            Table: flights
         | 
| 74 | 
            +
            Airline,FlightNo,SourceAirport,DestAirport
         | 
| 75 | 
            +
            1,28, APG, ASY
         | 
| 76 | 
            +
            1,29, ASY, APG
         | 
| 77 | 
            +
            1,44, CVO, ACV
         | 
| 78 | 
            +
            1,45, ACV, CVO
         | 
| 79 | 
            +
            1,54, AHD, AHT
         | 
| 80 | 
            +
             | 
| 81 | 
            +
            Table: model_list
         | 
| 82 | 
            +
            ModelId,Maker,Model
         | 
| 83 | 
            +
            1,1,amc
         | 
| 84 | 
            +
            2,2,audi
         | 
| 85 | 
            +
            3,3,bmw
         | 
| 86 | 
            +
            4,4,buick
         | 
| 87 | 
            +
            5,4,cadillac
         | 
| 88 | 
            +
             | 
| 89 | 
            +
            Table: heartAttack
         | 
| 90 | 
            +
            age,sex,chestpaintype,restingbloodpressure,cholestoralinmg,fastingbloodsugar,restingelectrocardiographicrresults,numberofmajorvvessels,thall,output
         | 
| 91 | 
            +
            62,male,typicalAngina,140,268,false,normal,2,2,noHeartAttack
         | 
| 92 | 
            +
            64,female,asymptomatic,110,211,false,normal,0,2,heartAttack
         | 
| 93 | 
            +
            68,female,nonAnginalPain,180,274,true,normal,0,3,noHeartAttack
         | 
| 94 | 
            +
            50,female,typicalAngina,144,200,false,normal,0,3,noHeartAttack
         | 
| 95 | 
            +
            76,male,nonAnginalPain,140,197,false,leftVentricularHypertrophy,0,2,heartAttack
         | 
| 96 | 
            +
             | 
| 97 | 
            +
            Table: Paragraphs
         | 
| 98 | 
            +
            Paragraph_ID,Document_ID,Paragraph_Text,Other_Details
         | 
| 99 | 
            +
            7,2394,Korea,
         | 
| 100 | 
            +
            9,3,Somalia,
         | 
| 101 | 
            +
            65,50123,Palestinian Territory,
         | 
| 102 | 
            +
            241,651512,Jersey,
         | 
| 103 | 
            +
            3708,33930,UK,
         | 
| 104 | 
            +
             | 
| 105 | 
            +
            Table: concert
         | 
| 106 | 
            +
            concert_ID,concert_Name,Theme,Stadium_ID,Year
         | 
| 107 | 
            +
            1,Auditions,Free choice,1,2014
         | 
| 108 | 
            +
            2,Super bootcamp,Free choice 2,2,2014
         | 
| 109 | 
            +
            3,Home Visits,Bleeding Love,2,2015
         | 
| 110 | 
            +
            4,Week 1,Wide Awake,10,2014
         | 
| 111 | 
            +
            5,Week 1,Happy Tonight,9,2015
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            Table: car_makers
         | 
| 114 | 
            +
            Id,Maker,FullName,Country
         | 
| 115 | 
            +
            1,amc,American Motor Company,1
         | 
| 116 | 
            +
            2,volkswagen,Volkswagen,2
         | 
| 117 | 
            +
            3,bmw,BMW,2
         | 
| 118 | 
            +
            4,gm,General Motors,1
         | 
| 119 | 
            +
            5,ford,Ford Motor Company,1
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            Table: evaluation
         | 
| 122 | 
            +
            Employee_ID,Year_awarded,Bonus
         | 
| 123 | 
            +
            1,2011,3000.0
         | 
| 124 | 
            +
            2,2015,3200.0
         | 
| 125 | 
            +
            1,2016,2900.0
         | 
| 126 | 
            +
            4,2017,3200.0
         | 
| 127 | 
            +
            7,2018,3200.0
         | 
| 128 | 
            +
             | 
| 129 | 
            +
            Table: singer_in_concert
         | 
| 130 | 
            +
            concert_ID,Singer_ID
         | 
| 131 | 
            +
            1,2
         | 
| 132 | 
            +
            1,3
         | 
| 133 | 
            +
            1,5
         | 
| 134 | 
            +
            2,3
         | 
| 135 | 
            +
            2,6
         | 
| 136 | 
            +
             | 
| 137 | 
            +
            Table: Documents
         | 
| 138 | 
            +
            Document_ID,Template_ID,Document_Name,Document_Description,Other_Details
         | 
| 139 | 
            +
            0,7,Introduction of OS,n,
         | 
| 140 | 
            +
            1,25,Understanding DB,y,
         | 
| 141 | 
            +
            3,6,Summer Show,u,
         | 
| 142 | 
            +
            76,20,Robbin CV,y,
         | 
| 143 | 
            +
            80,14,Welcome to NY,h,
         | 
| 144 | 
            +
             | 
| 145 | 
            +
            Table: visit
         | 
| 146 | 
            +
            Museum_ID,visitor_ID,Num_of_Ticket,Total_spent
         | 
| 147 | 
            +
            1,5,20,320.14
         | 
| 148 | 
            +
            2,5,4,89.98
         | 
| 149 | 
            +
            4,3,10,320.44
         | 
| 150 | 
            +
            2,3,24,209.98
         | 
| 151 | 
            +
            4,6,3,20.44
         | 
| 152 | 
            +
             | 
| 153 | 
            +
            Table: museum
         | 
| 154 | 
            +
            Museum_ID,Name,Num_of_Staff,Open_Year
         | 
| 155 | 
            +
            1,Plaza Museum,62,2000
         | 
| 156 | 
            +
            2,Capital Plaza Museum,25,2012
         | 
| 157 | 
            +
            3,Jefferson Development Museum,18,2010
         | 
| 158 | 
            +
            4,Willow Grande Museum,17,2011
         | 
| 159 | 
            +
            5,RiverPark Museum,16,2008
         | 
| 160 | 
            +
             | 
| 161 | 
            +
            Table: singer
         | 
| 162 | 
            +
            Singer_ID,Name,Country,Song_Name,Song_release_year,Age,Is_male
         | 
| 163 | 
            +
            1,Joe Sharp,Netherlands,You,1992,52,F
         | 
| 164 | 
            +
            2,Timbaland,United States,Dangerous,2008,32,T
         | 
| 165 | 
            +
            3,Justin Brown,France,Hey Oh,2013,29,T
         | 
| 166 | 
            +
            4,Rose White,France,Sun,2003,41,F
         | 
| 167 | 
            +
            5,John Nizinik,France,Gentleman,2014,43,T
         | 
| 168 | 
            +
             | 
| 169 | 
            +
            Table: countries
         | 
| 170 | 
            +
            CountryId,CountryName,Continent
         | 
| 171 | 
            +
            1,usa,1
         | 
| 172 | 
            +
            2,germany,2
         | 
| 173 | 
            +
            3,france,2
         | 
| 174 | 
            +
            4,japan,3
         | 
| 175 | 
            +
            5,italy,2
         | 
| 176 | 
            +
             | 
| 177 | 
            +
            Table: continents
         | 
| 178 | 
            +
            ContId,Continent
         | 
| 179 | 
            +
            1,america
         | 
| 180 | 
            +
            2,europe
         | 
| 181 | 
            +
            3,asia
         | 
| 182 | 
            +
            4,africa
         | 
| 183 | 
            +
            5,australia
         | 
| 184 | 
            +
             | 
| 185 | 
            +
            Table: adultCensus
         | 
| 186 | 
            +
            workclass,education,maritalstatus,occupation,relationship,race,sex,hoursperweek,nativecountry,income
         | 
| 187 | 
            +
            Private,Doctorate,Married-civ-spouse,Prof-specialty,Husband,White,Male,60,United-States,>50K
         | 
| 188 | 
            +
            Local-gov,Some-college,Divorced,Adm-clerical,Not-in-family,Black,Female,40,United-States,<=50K
         | 
| 189 | 
            +
            Private,10th,Married-civ-spouse,Machine-op-inspct,Husband,White,Male,40,United-States,<=50K
         | 
| 190 | 
            +
            Private,Some-college,Married-civ-spouse,Exec-managerial,Husband,White,Male,44,United-States,>50K
         | 
| 191 | 
            +
            ?,HS-grad,Never-married,?,Not-in-family,White,Female,40,United-States,<=50K
         | 
| 192 | 
            +
             | 
| 193 | 
            +
            Table: latePayment
         | 
| 194 | 
            +
            customerid,paperlessdate,invoicenumber,invoicedate,duedate,invoiceamount,disputed,paperlessbill,daystosettle,dayslate
         | 
| 195 | 
            +
            7758-WKLVM,2/6/2012,5510823569,4/11/2012,5/11/2012,30.06,No,Electronic,36,6
         | 
| 196 | 
            +
            2820-XGXSB,1/26/2012,6528247418,1/4/2013,2/3/2013,84.86,No,Electronic,4,0
         | 
| 197 | 
            +
            2621-XCLEH,9/24/2012,9465847338,6/18/2013,7/18/2013,37.49,No,Electronic,29,0
         | 
| 198 | 
            +
            5196-TWQXF,6/20/2012,7092718520,12/2/2012,1/1/2013,50.17,No,Electronic,22,0
         | 
| 199 | 
            +
            9725-EZTEJ,3/17/2012,685917930,10/13/2012,11/12/2012,124.38,Yes,Electronic,28,0
         | 
| 200 | 
            +
             | 
| 201 | 
            +
            Table: course_arrange
         | 
| 202 | 
            +
            Course_ID,Teacher_ID,Grade
         | 
| 203 | 
            +
            2,5,1
         | 
| 204 | 
            +
            2,3,3
         | 
| 205 | 
            +
            3,2,5
         | 
| 206 | 
            +
            4,6,7
         | 
| 207 | 
            +
            5,6,1
         | 
| 208 | 
            +
             | 
| 209 | 
            +
            Table: Has_Pet
         | 
| 210 | 
            +
            StuID,PetID
         | 
| 211 | 
            +
            1001,2001
         | 
| 212 | 
            +
            1002,2002
         | 
| 213 | 
            +
            1002,2003
         | 
| 214 | 
            +
             | 
| 215 | 
            +
            Table: breastCancer
         | 
| 216 | 
            +
            patientidentifier,age,menopausalstatus,tumorsize,tumorgrade,numberpositivelymphnodes,progesteronereceptor,estrogenreceptor,hormonaltherapy,status
         | 
| 217 | 
            +
            1522,32,premenopausal,25,2,2,36,10,no,"aliveWithoutRecurrence,"
         | 
| 218 | 
            +
            1329,61,postmenopausal,30,2,1,24,38,yes,"aliveWithoutRecurrence,"
         | 
| 219 | 
            +
            1141,62,postmenopausal,33,1,5,239,76,no,recurrenceOrDeath
         | 
| 220 | 
            +
            1488,66,postmenopausal,42,3,11,412,339,yes,recurrenceOrDeath
         | 
| 221 | 
            +
            1294,38,premenopausal,23,3,3,14,6,no,"aliveWithoutRecurrence,"
         | 
| 222 | 
            +
             | 
| 223 | 
            +
            Table: hiring
         | 
| 224 | 
            +
            Shop_ID,Employee_ID,Start_from,Is_full_time
         | 
| 225 | 
            +
            1,1,2009,T
         | 
| 226 | 
            +
            1,2,2003,T
         | 
| 227 | 
            +
            8,3,2011,F
         | 
| 228 | 
            +
            4,4,2012,T
         | 
| 229 | 
            +
            5,5,2013,T
         | 
| 230 | 
            +
             | 
| 231 | 
            +
            Table: cars_data
         | 
| 232 | 
            +
            Id,MPG,Cylinders,Edispl,Horsepower,Weight,Accelerate,Year
         | 
| 233 | 
            +
            1,18,8,307.0,130,3504,12.0,1970
         | 
| 234 | 
            +
            2,15,8,350.0,165,3693,11.5,1970
         | 
| 235 | 
            +
            3,18,8,318.0,150,3436,11.0,1970
         | 
| 236 | 
            +
            4,16,8,304.0,150,3433,12.0,1970
         | 
| 237 | 
            +
            5,17,8,302.0,140,3449,10.5,1970
         | 
| 238 | 
            +
             | 
| 239 | 
            +
            Table: car_names
         | 
| 240 | 
            +
            MakeId,Model,Make
         | 
| 241 | 
            +
            1,chevrolet,chevrolet chevelle malibu
         | 
| 242 | 
            +
            2,buick,buick skylark 320
         | 
| 243 | 
            +
            3,plymouth,plymouth satellite
         | 
| 244 | 
            +
            4,amc,amc rebel sst
         | 
| 245 | 
            +
            5,ford,ford torino
         | 
| 246 | 
            +
             | 
| 247 | 
            +
            Table: visitor
         | 
| 248 | 
            +
            ID,Name,Level_of_membership,Age
         | 
| 249 | 
            +
            1,Gonzalo Higuaín ,8,35
         | 
| 250 | 
            +
            2,Guti Midfielder,5,28
         | 
| 251 | 
            +
            3,Arjen Robben,1,27
         | 
| 252 | 
            +
            4,Raúl Brown,2,56
         | 
| 253 | 
            +
            5,Fernando Gago,6,36
         | 
| 254 | 
            +
             | 
| 255 | 
            +
            Table: salesTransactions
         | 
| 256 | 
            +
            transactionno,date,productno,productname,price,quantity,customerno,country
         | 
| 257 | 
            +
            549047,4/6/2019,21544,Skulls-Water-Transfer-Tattoos,11.12,2,17783.0,United-Kingdom
         | 
| 258 | 
            +
            566959,9/15/2019,22113,Grey-Heart-Hot-Water-Bottle,14.61,2,17530.0,United-Kingdom
         | 
| 259 | 
            +
            536526,12/1/2018,22173,Metal-4-Hook-Hanger-French-Chateau,13.27,16,14001.0,United-Kingdom
         | 
| 260 | 
            +
            580355,12/2/2019,47599A,Pink-Party-Bags,6.19,12,13953.0,United-Kingdom
         | 
| 261 | 
            +
            579557,11/30/2019,21671,Red-Spot-Ceramic-Drawer-Knob,6.19,1,12557.0,United-Kingdom
         | 
| 262 | 
            +
             | 
| 263 | 
            +
            Table: airports
         | 
| 264 | 
            +
            City,AirportCode,AirportName,Country,CountryAbbrev
         | 
| 265 | 
            +
            Aberdeen ,APG,Phillips AAF ,United States ,US 
         | 
| 266 | 
            +
            Aberdeen ,ABR,Municipal ,United States ,US
         | 
| 267 | 
            +
            Abilene ,DYS,Dyess AFB ,United States ,US
         | 
| 268 | 
            +
            Abilene ,ABI,Municipal ,United States ,US
         | 
| 269 | 
            +
            Abingdon ,VJI,Virginia Highlands ,United States ,US
         | 
| 270 | 
            +
             | 
| 271 | 
            +
            Table: mushrooms
         | 
| 272 | 
            +
            class,capshape,capsurface,capcolor,bruises,odor,gillattachment,gillspacing,gillsize,gillcolor
         | 
| 273 | 
            +
            poisonous,flat,smooth,white,bruises,pungent,free,close,narrow,brown
         | 
| 274 | 
            +
            edible,convex,fibrous,gray,no,none,free,crowded,broad,black
         | 
| 275 | 
            +
            edible,bell,smooth,white,bruises,almond,free,close,broad,gray
         | 
| 276 | 
            +
            edible,flat,scaly,brown,bruises,none,free,close,broad,pink
         | 
| 277 | 
            +
            poisonous,convex,fibrous,yellow,no,foul,free,close,broad,gray
         | 
| 278 | 
            +
             | 
| 279 | 
            +
            Table: Pets
         | 
| 280 | 
            +
            PetID,PetType,pet_age,weight
         | 
| 281 | 
            +
            2001,cat,3,12.0
         | 
| 282 | 
            +
            2002,dog,2,13.4
         | 
| 283 | 
            +
            2003,dog,1,9.3
         | 
| 284 | 
            +
             | 
| 285 | 
            +
            Table: teacher
         | 
| 286 | 
            +
            Teacher_ID,Name,Age,Hometown
         | 
| 287 | 
            +
            1,Joseph Huts,32,Blackrod Urban District
         | 
| 288 | 
            +
            2,Gustaaf Deloor,29,Bolton County Borough
         | 
| 289 | 
            +
            3,Vicente Carretero,26,Farnworth Municipal Borough
         | 
| 290 | 
            +
            4,John Deloor,33,Horwich Urban District
         | 
| 291 | 
            +
            5,Kearsley Brown,45,Kearsley Urban District
         | 
| 292 | 
            +
             | 
| 293 | 
            +
            Table: course
         | 
| 294 | 
            +
            Course_ID,Staring_Date,Course
         | 
| 295 | 
            +
            1,5 May,Language Arts
         | 
| 296 | 
            +
            2,6 May,Math
         | 
| 297 | 
            +
            3,7 May,Science
         | 
| 298 | 
            +
            4,9 May,History
         | 
| 299 | 
            +
            5,10 May,Bible
         | 
| 300 | 
            +
             | 
    	
        tables_dict.pkl
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:a05f1d65a8f0d5ea2bb1aa1efd76cddb2685ca2da4a3aac54838d5be1205cbe6
         | 
| 3 | 
            +
            size 22799
         | 
    	
        utilities.py
    CHANGED
    
    | @@ -1,6 +1,7 @@ | |
| 1 | 
             
            import csv
         | 
| 2 | 
             
            import re
         | 
| 3 | 
             
            import pandas as pd
         | 
|  | |
| 4 | 
             
            import sqlite3
         | 
| 5 | 
             
            import gradio as gr
         | 
| 6 | 
             
            import os
         | 
| @@ -107,6 +108,10 @@ def generate_some_samples(connector, tbl_name): | |
| 107 | 
             
                    samples.append(f"Error: {e}")
         | 
| 108 | 
             
                return samples
         | 
| 109 |  | 
|  | |
|  | |
|  | |
|  | |
| 110 | 
             
            def extract_tables_dict(pnp_path):
         | 
| 111 | 
             
                tables_dict = {}
         | 
| 112 | 
             
                with open(pnp_path, mode='r', encoding='utf-8') as file:
         | 
| @@ -126,5 +131,5 @@ def extract_tables_dict(pnp_path): | |
| 126 | 
             
                                tables_dict[tbl_name] = df
         | 
| 127 | 
             
                            except Exception as e:
         | 
| 128 | 
             
                                tables_dict[tbl_name] = pd.DataFrame({"Error": [str(e)]})  # DataFrame con messaggio di errore
         | 
| 129 | 
            -
                
         | 
| 130 | 
            -
                return tables_dict
         | 
|  | |
| 1 | 
             
            import csv
         | 
| 2 | 
             
            import re
         | 
| 3 | 
             
            import pandas as pd
         | 
| 4 | 
            +
            import pickle
         | 
| 5 | 
             
            import sqlite3
         | 
| 6 | 
             
            import gradio as gr
         | 
| 7 | 
             
            import os
         | 
|  | |
| 108 | 
             
                    samples.append(f"Error: {e}")
         | 
| 109 | 
             
                return samples
         | 
| 110 |  | 
| 111 | 
            +
            def load_tables_dict(file_path):
         | 
| 112 | 
            +
                with open(file_path, 'rb') as f:
         | 
| 113 | 
            +
                    return pickle.load(f)
         | 
| 114 | 
            +
             | 
| 115 | 
             
            def extract_tables_dict(pnp_path):
         | 
| 116 | 
             
                tables_dict = {}
         | 
| 117 | 
             
                with open(pnp_path, mode='r', encoding='utf-8') as file:
         | 
|  | |
| 131 | 
             
                                tables_dict[tbl_name] = df
         | 
| 132 | 
             
                            except Exception as e:
         | 
| 133 | 
             
                                tables_dict[tbl_name] = pd.DataFrame({"Error": [str(e)]})  # DataFrame con messaggio di errore
         | 
| 134 | 
            +
                return load_tables_dict('tables_dict.csv')
         | 
| 135 | 
            +
                return tables_dict
         | 
