Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import pandas as pd | |
import os | |
from qatch.connectors.sqlite_connector import SqliteConnector | |
from qatch.generate_dataset.orchestrator_generator import OrchestratorGenerator | |
from qatch.evaluate_dataset.orchestrator_evaluator import OrchestratorEvaluator | |
import utilities as us | |
import plotly.express as px | |
import plotly.graph_objects as go | |
with open('style.css', 'r') as file: | |
css = file.read() | |
# DataFrame di default | |
df_default = pd.DataFrame({ | |
'Name': ['Alice', 'Bob', 'Charlie'], | |
'Age': [25, 30, 35], | |
'City': ['New York', 'Los Angeles', 'Chicago'] | |
}) | |
models_path = "models.csv" | |
# Variabile globale per tenere traccia dei dati correnti | |
df_current = df_default.copy() | |
input_data = { | |
'input_method': "", | |
'data_path': "", | |
'db_name': "", | |
'data': { | |
'data_frames': {}, # dictionary of dataframes | |
'db': None # SQLITE3 database object | |
}, | |
'models': [] | |
} | |
def load_data(file, path, use_default): | |
"""Carica i dati da un file, un percorso o usa il DataFrame di default.""" | |
global df_current | |
if use_default: | |
input_data["input_method"] = 'default' | |
input_data["data_path"] = os.path.join(".", "data", "datainterface", "mytable.sqlite") | |
input_data["db_name"] = os.path.splitext(os.path.basename(input_data["data_path"]))[0] | |
input_data["data"]['data_frames'] = {'MyTable': df_current} | |
#TODO assegna il db a input_data["data"]['db'] | |
df_current = df_default.copy() # Ripristina i dati di default | |
return input_data["data"]['data_frames'] | |
selected_inputs = sum([file is not None, bool(path), use_default]) | |
if selected_inputs > 1: | |
return 'Errore: Selezionare solo un metodo di input alla volta.' | |
if file is not None: | |
try: | |
input_data["input_method"] = 'uploaded_file' | |
input_data["db_name"] = os.path.splitext(os.path.basename(file))[0] | |
input_data["data_path"] = os.path.join(".", "data", f"data_interface{input_data['db_name']}.sqlite") | |
input_data["data"] = us.load_data(input_data["data_path"], input_data["db_name"]) | |
df_current = input_data["data"]['data_frames'].get('MyTable', df_default) # Carica il DataFrame | |
print(df_current) | |
print(input_data["data"]) | |
if( input_data["data"]['data_frames'] and not input_data["data"]['db']): | |
table2primary_key = {} | |
print("ok") | |
for table_name, df in input_data["data"]['data_frames'].items(): | |
# Assign primary keys for each table | |
table2primary_key[table_name] = 'id' | |
print("ok2") | |
input_data["data"]["db"] = SqliteConnector( | |
relative_db_path=input_data["data_path"], | |
db_name=input_data["db_name"], | |
tables= input_data["data"]['data_frames'], | |
table2primary_key=table2primary_key | |
) | |
print(input_data["data"]["db"]) | |
return input_data["data"]['data_frames'] | |
except Exception as e: | |
return f'Errore nel caricamento del file: {e}' | |
if path: | |
if not os.path.exists(path): | |
return 'Errore: Il percorso specificato non esiste.' | |
try: | |
input_data["input_method"] = 'uploaded_file' | |
input_data["data_path"] = path | |
input_data["db_name"] = os.path.splitext(os.path.basename(path))[0] | |
input_data["data"] = us.load_data(input_data["data_path"], input_data["db_name"]) | |
df_current = input_data["data"]['data_frames'].get('MyTable', df_default) # Carica il DataFrame | |
return input_data["data"]['data_frames'] | |
except Exception as e: | |
return f'Errore nel caricamento del file dal percorso: {e}' | |
return input_data["data"]['data_frames'] | |
def preview_default(use_default): | |
"""Mostra il DataFrame di default se il checkbox è selezionato.""" | |
if use_default: | |
return df_default # Mostra il DataFrame di default | |
return df_current # Mostra il DataFrame corrente, che potrebbe essere stato modificato | |
def update_df(new_df): | |
"""Aggiorna il DataFrame corrente.""" | |
global df_current # Usa la variabile globale per aggiornarla | |
df_current = new_df | |
return df_current | |
def open_accordion(target): | |
# Apre uno e chiude l'altro | |
if target == "reset": | |
return gr.update(open=True), gr.update(open=False, visible=False), gr.update(open=False, visible=False), gr.update(open=False, visible=False), gr.update(open=False, visible=False) | |
elif target == "model_selection": | |
return gr.update(open=False), gr.update(open=False), gr.update(open=True, visible=True), gr.update(open=False), gr.update(open=False) | |
# Interfaccia Gradio | |
interface = gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') | |
with interface: | |
gr.Markdown("# QATCH") | |
data_state = gr.State(None) # Memorizza i dati caricati | |
upload_acc = gr.Accordion("Upload your data section", open=True, visible=True) | |
select_table_acc = gr.Accordion("Select tables", open=False, visible=False) | |
select_model_acc = gr.Accordion("Select models", open=False, visible=False) | |
qatch_acc = gr.Accordion("QATCH execution", open=False, visible=False) | |
metrics_acc = gr.Accordion("Metrics", open=False, visible=False) | |
################################# | |
# PARTE DI INSERIMENTO DEL DB # | |
################################# | |
with upload_acc: | |
gr.Markdown("## Caricamento dei Dati") | |
file_input = gr.File(label="Trascina e rilascia un file", file_types=[".csv", ".xlsx", ".sqlite"]) | |
path_input = gr.Textbox(label="Oppure inserisci il percorso locale del file") | |
with gr.Row(): | |
default_checkbox = gr.Checkbox(label="Usa DataFrame di default") | |
preview_output = gr.DataFrame(interactive=True, visible=True, value=df_default) | |
submit_button = gr.Button("Carica Dati", interactive=False) # Disabilitato di default | |
output = gr.JSON(visible=False) # Output dizionario | |
# Funzione per abilitare il bottone se sono presenti dati da caricare | |
def enable_submit(file, path, use_default): | |
return gr.update(interactive=bool(file or path or use_default)) | |
# Abilita il bottone quando i campi di input sono valorizzati | |
file_input.change(fn=enable_submit, inputs=[file_input, path_input, default_checkbox], outputs=[submit_button]) | |
path_input.change(fn=enable_submit, inputs=[file_input, path_input, default_checkbox], outputs=[submit_button]) | |
default_checkbox.change(fn=enable_submit, inputs=[file_input, path_input, default_checkbox], outputs=[submit_button]) | |
# Mostra l'anteprima del DataFrame di default quando il checkbox è selezionato | |
default_checkbox.change(fn=preview_default, inputs=[default_checkbox], outputs=[preview_output]) | |
preview_output.change(fn=update_df, inputs=[preview_output], outputs=[preview_output]) | |
def handle_output(file, path, use_default): | |
"""Gestisce l'output quando si preme il bottone 'Carica Dati'.""" | |
result = load_data(file, path, use_default) | |
if isinstance(result, dict): # Se result è un dizionario di DataFrame | |
if len(result) == 1: # Se c'è solo una tabella | |
return ( | |
gr.update(visible=False), # Nasconde l'output JSON | |
result, # Salva lo stato dei dati | |
gr.update(visible=False), # Nasconde la selezione tabella | |
result, # Mantiene lo stato dei dati | |
gr.update(interactive=False), # Disabilita il pulsante di submit | |
gr.update(visible=True, open=True), # Passa direttamente a select_model_acc | |
gr.update(visible=True, open=False) | |
) | |
else: | |
return ( | |
gr.update(visible=False), | |
result, | |
gr.update(open=True, visible=True), | |
result, | |
gr.update(interactive=False), | |
gr.update(visible=False), # Mantiene il comportamento attuale | |
gr.update(visible=True, open=True) | |
) | |
else: | |
return ( | |
gr.update(visible=False), | |
None, | |
gr.update(open=False, visible=True), | |
None, | |
gr.update(interactive=True), | |
gr.update(visible=False), | |
gr.update(visible=True, open=True) | |
) | |
submit_button.click( | |
fn=handle_output, | |
inputs=[file_input, path_input, default_checkbox], | |
outputs=[output, output, select_table_acc, data_state, submit_button, select_model_acc, upload_acc] | |
) | |
###################################### | |
# PARTE DI SELEZIONE DELLE TABELLE # | |
###################################### | |
with select_table_acc: | |
table_selector = gr.CheckboxGroup(choices=[], label="Seleziona le tabelle da visualizzare", value=[]) | |
table_outputs = [gr.DataFrame(label=f"Tabella {i+1}", interactive=True, visible=False) for i in range(5)] | |
selected_table_names = gr.Textbox(label="Tabelle selezionate", visible=False, interactive=False) | |
# Bottone di selezione modelli (inizialmente disabilitato) | |
open_model_selection = gr.Button("Choose your models", interactive=False) | |
def update_table_list(data): | |
"""Aggiorna dinamicamente la lista delle tabelle disponibili.""" | |
if isinstance(data, dict) and data: | |
table_names = list(data.keys()) # Ritorna solo i nomi delle tabelle | |
return gr.update(choices=table_names, value=[]) # Reset delle selezioni | |
return gr.update(choices=[], value=[]) | |
def show_selected_tables(data, selected_tables): | |
"""Mostra solo le tabelle selezionate dall'utente e abilita il bottone.""" | |
updates = [] | |
if isinstance(data, dict) and data: | |
available_tables = list(data.keys()) # Nomi effettivamente disponibili | |
selected_tables = [t for t in selected_tables if t in available_tables] # Filtra selezioni valide | |
tables = {name: data[name] for name in selected_tables} # Filtra i DataFrame | |
for i, (name, df) in enumerate(tables.items()): | |
updates.append(gr.update(value=df, label=f"Tabella: {name}", visible=True)) | |
# Se ci sono meno di 5 tabelle, nascondi gli altri DataFrame | |
for _ in range(len(tables), 5): | |
updates.append(gr.update(visible=False)) | |
else: | |
updates = [gr.update(value=pd.DataFrame(), visible=False) for _ in range(5)] | |
# Abilitare/disabilitare il bottone in base alle selezioni | |
button_state = bool(selected_tables) # True se almeno una tabella è selezionata, False altrimenti | |
updates.append(gr.update(interactive=button_state)) # Aggiorna stato bottone | |
return updates | |
def show_selected_table_names(selected_tables): | |
"""Mostra i nomi delle tabelle selezionate quando si preme il bottone.""" | |
if selected_tables: | |
return gr.update(value=", ".join(selected_tables), visible=False) | |
return gr.update(value="", visible=False) | |
# Aggiorna automaticamente la lista delle checkbox quando `data_state` cambia | |
data_state.change(fn=update_table_list, inputs=[data_state], outputs=[table_selector]) | |
# Aggiorna le tabelle visibili e lo stato del bottone in base alle selezioni dell'utente | |
table_selector.change(fn=show_selected_tables, inputs=[data_state, table_selector], outputs=table_outputs + [open_model_selection]) | |
# Mostra la lista delle tabelle selezionate quando si preme "Choose your models" | |
open_model_selection.click(fn=show_selected_table_names, inputs=[table_selector], outputs=[selected_table_names]) | |
open_model_selection.click(open_accordion, inputs=gr.State("model_selection"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc]) | |
#################################### | |
# PARTE DI SELEZIONE DEL MODELLO # | |
#################################### | |
with select_model_acc: | |
gr.Markdown("**Model Selection**") | |
# Supponiamo che `us.read_models_csv` restituisca anche il percorso dell'immagine | |
model_list_dict = us.read_models_csv(models_path) | |
model_list = [model["name"] for model in model_list_dict] | |
model_images = [model["image_path"] for model in model_list_dict] | |
# Creazione dinamica di checkbox con immagini | |
model_checkboxes = [] | |
for model, image_path in zip(model_list, model_images): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Image(image_path, show_label=False) | |
with gr.Column(scale=2): | |
model_checkboxes.append(gr.Checkbox(label=model, value=False)) | |
selected_models_output = gr.JSON(visible = False) | |
# Funzione per ottenere i modelli selezionati | |
def get_selected_models(*model_selections): | |
selected_models = [model for model, selected in zip(model_list, model_selections) if selected] | |
input_data['models'] = selected_models | |
button_state = bool(selected_models) # True se almeno un modello è selezionato, False altrimenti | |
return selected_models, gr.update(open=True, visible=True), gr.update(interactive=button_state) | |
# Bottone di submit (inizialmente disabilitato) | |
submit_models_button = gr.Button("Submit Models", interactive=False) | |
# Collegamento dei checkbox agli eventi di selezione | |
for checkbox in model_checkboxes: | |
checkbox.change( | |
fn=get_selected_models, | |
inputs=model_checkboxes, | |
outputs=[selected_models_output, select_model_acc, submit_models_button] | |
) | |
submit_models_button.click( | |
fn=lambda *args: (get_selected_models(*args), gr.update(open=False, visible=True), gr.update(open=True, visible=True)), | |
inputs=model_checkboxes, | |
outputs=[selected_models_output, select_model_acc, qatch_acc] | |
) | |
reset_data = gr.Button("Open upload data section") | |
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc]) | |
############################### | |
# PARTE DI ESECUZIONE QATCH # | |
############################### | |
with qatch_acc: | |
selected_models_display = gr.JSON(label="Modelli selezionati") | |
submit_models_button.click( | |
fn=lambda: gr.update(value=input_data), | |
outputs=[selected_models_display] | |
) | |
proceed_to_metrics_button = gr.Button("Proceed to Metrics") | |
proceed_to_metrics_button.click( | |
fn=lambda: (gr.update(open=False, visible=True), gr.update(open=True, visible=True)), | |
outputs=[qatch_acc, metrics_acc] | |
) | |
reset_data = gr.Button("Open upload data section") | |
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc]) | |
####################################### | |
# PARTE DI VISUALIZZAZIONE METRICHE # | |
####################################### | |
with metrics_acc: | |
confirmation_text = gr.Markdown("## Metrics successfully loaded") | |
data_path = 'metrics_random2.csv' | |
def load_data_csv_es(): | |
return pd.read_csv(data_path) | |
def calculate_average_metrics(df, selected_metrics): | |
df['avg_metric'] = df[selected_metrics].mean(axis=1) | |
return df | |
def plot_metric(df, selected_metrics, group_by, selected_models): | |
df = df[df['model'].isin(selected_models)] | |
df = calculate_average_metrics(df, selected_metrics) | |
avg_metrics = df.groupby(group_by)['avg_metric'].mean().reset_index() | |
fig = px.bar( | |
avg_metrics, x=group_by[0], y='avg_metric', color=group_by[-1], barmode='group', | |
title=f'Media metrica per {group_by[0]}', | |
labels={group_by[0]: group_by[0].capitalize(), 'avg_metric': 'Media Metrica'}, | |
template='plotly_dark' | |
) | |
return fig | |
def plot_radar(df, selected_models): | |
radar_data = [] | |
for model in selected_models: | |
model_df = df[df['model'] == model] | |
valid_efficiency = model_df['valid_efficiency_score'].mean() | |
avg_time = model_df['time'].mean() | |
avg_tuple_order = model_df['tuple_order'].dropna().mean() | |
radar_data.append({ | |
'model': model, | |
'valid_efficiency_score': valid_efficiency, | |
'time': avg_time, | |
'tuple_order': avg_tuple_order | |
}) | |
radar_df = pd.DataFrame(radar_data) | |
categories = ['valid_efficiency_score', 'time', 'tuple_order'] | |
# Calcola il range dinamico per il grafico | |
min_val = radar_df[categories].min().min() | |
max_val = radar_df[categories].max().max() | |
radar_df[categories] = (radar_df[categories] - min_val) / (max_val - min_val) | |
fig = go.Figure() | |
for _, row in radar_df.iterrows(): | |
fig.add_trace(go.Scatterpolar( | |
r=[row[cat] for cat in categories], | |
theta=categories, | |
fill='toself', | |
name=row['model'] | |
)) | |
fig.update_layout( | |
polar=dict(radialaxis=dict(visible=True, range=[min_val, max_val])), | |
title='Radar Plot delle Metriche per Modello', | |
template='plotly_dark', | |
width=700, height=700 | |
) | |
return fig | |
def plot_query_rate(df, selected_models, show_labels): | |
df = df[df['model'].isin(selected_models)] | |
fig = go.Figure() | |
for model in selected_models: | |
model_df = df[df['model'] == model].copy() | |
model_df['cumulative_time'] = model_df['time'].cumsum() | |
model_df['query_rate'] = 1 / model_df['time'] | |
fig.add_trace(go.Scatter( | |
x=model_df['cumulative_time'], | |
y=model_df['query_rate'], | |
mode='lines+markers', | |
name=model, | |
line=dict(width=2) | |
)) | |
if show_labels: | |
prev_category = None | |
prev_time = -float('inf') | |
y_positions = [1.1, 1.3] | |
y_idx = 0 | |
for i, row in model_df.iterrows(): | |
current_category = row['test_category'] | |
if current_category != prev_category and row['cumulative_time'] - prev_time > 5: | |
fig.add_vline(x=row['cumulative_time'], line_width=1, line_dash="dash", line_color="gray") | |
fig.add_annotation( | |
x=row['cumulative_time'], | |
y=max(model_df['query_rate']) * y_positions[y_idx % 2], | |
text=current_category, | |
showarrow=False, | |
font=dict(size=10, color="white"), | |
textangle=45, | |
yshift=10, | |
bgcolor="rgba(0,0,0,0.6)" | |
) | |
prev_category = current_category | |
prev_time = row['cumulative_time'] | |
y_idx += 1 | |
fig.update_layout( | |
title="Rate di Generazione delle Query per Modello", | |
xaxis_title="Tempo Cumulativo (s)", | |
yaxis_title="Query al Secondo", | |
template='plotly_dark', | |
legend_title="Modelli" | |
) | |
return fig | |
def update_plot(selected_metrics, group_by, selected_models): | |
df = load_data_csv_es() | |
return plot_metric(df, selected_metrics, group_by, selected_models) | |
def update_radar(selected_models): | |
df = load_data_csv_es() | |
return plot_radar(df, selected_models) | |
def update_query_rate(selected_models, show_labels): | |
df = load_data_csv_es() | |
return plot_query_rate(df, selected_models, show_labels) | |
def plot_query_time_evolution(df, selected_models): | |
# Filtriamo i dati per i modelli selezionati | |
df = df[df['model'].isin(selected_models)] | |
# Ordinare per modello e tempo per tracciare l'evoluzione | |
df_sorted = df.sort_values(by=['model', 'time']) | |
fig = go.Figure() | |
# Aggiungiamo una traccia per ogni modello | |
for model in selected_models: | |
model_df = df_sorted[df_sorted['model'] == model] | |
fig.add_trace(go.Scatter( | |
x=model_df.index, y=model_df['time'], mode='lines+markers', name=model, | |
line=dict(shape='linear'), | |
text=model_df['model'] | |
)) | |
fig.update_layout( | |
title="Evoluzione del Tempo di Generazione per Modello", | |
xaxis_title="Indice della Query", | |
yaxis_title="Tempo (s)", | |
template='plotly_dark' | |
) | |
return fig | |
metrics = ["cell_precision", "cell_recall", "execution_accuracy", "tuple_cardinality", "tuple_constraint"] | |
group_options = { | |
"SQL Category": ["test_category", "model"], | |
"Tabella": ["tbl_name", "model"], | |
"Modello": ["model"] | |
} | |
df_initial = load_data_csv_es() | |
models = df_initial['model'].unique().tolist() | |
#with gr.Blocks(theme=gr.themes.Default(primary_hue='blue')) as demo: | |
gr.Markdown("""## Analisi delle prestazioni dei modelli | |
Seleziona una o più metriche per calcolare la media e visualizzare gli istogrammi e radar plots. | |
""") | |
# Sezione di selezione delle opzioni | |
with gr.Row(): | |
metric_multiselect = gr.CheckboxGroup(choices=metrics, label="Seleziona le metriche") | |
model_multiselect = gr.CheckboxGroup(choices=models, label="Seleziona i modelli", value=models) | |
group_radio = gr.Radio(choices=list(group_options.keys()), label="Seleziona il raggruppamento", value="SQL Category") | |
#show_labels_checkbox = gr.Checkbox(label="Mostra etichette test category", value=True) | |
with gr.Row(): | |
output_plot = gr.Plot() | |
# Dividi la pagina in due colonne | |
with gr.Row(): | |
with gr.Column(scale=1): # Imposta la colonna a occupare metà della larghezza | |
radar_plot = gr.Plot(value=update_radar(models)) | |
with gr.Column(scale=2): # Imposta la seconda colonna a occupare l'altra metà | |
show_labels_checkbox = gr.Checkbox(label="Mostra etichette test category", value=True) | |
query_rate_plot = gr.Plot(value=update_query_rate(models, True)) | |
# Funzioni di callback per il cambiamento dei grafici | |
def on_change(selected_metrics, selected_group, selected_models): | |
return update_plot(selected_metrics, group_options[selected_group], selected_models) | |
def on_radar_change(selected_models): | |
return update_radar(selected_models) | |
show_labels_checkbox.change(update_query_rate, inputs=[model_multiselect, show_labels_checkbox], outputs=query_rate_plot) | |
metric_multiselect.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot) | |
group_radio.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot) | |
model_multiselect.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot) | |
model_multiselect.change(on_radar_change, inputs=model_multiselect, outputs=radar_plot) | |
model_multiselect.change(update_query_rate, inputs=[model_multiselect, show_labels_checkbox], outputs=query_rate_plot) | |
reset_data = gr.Button("Open upload data section") | |
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc]) | |
interface.launch() |