qatch-demo / utilities.py
franceth's picture
Fix prompts buttons, and NL2SQL bug
b8f53f4 verified
raw
history blame
8.02 kB
import csv
import re
import pandas as pd
import pickle
import sqlite3
import gradio as gr
import os
from qatch.connectors.sqlite_connector import SqliteConnector
from qatch.evaluate_dataset.metrics_evaluators import CellPrecision, CellRecall, ExecutionAccuracy, TupleCardinality, TupleConstraint, TupleOrder, ValidEfficiencyScore
import qatch.evaluate_dataset.orchestrator_evaluator as eva
import utils_get_db_tables_info
#import tiktoken
from transformers import AutoTokenizer
def extract_tables(file_path):
conn = sqlite3.connect(file_path)
cursor = conn.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
tabelle = cursor.fetchall()
tabelle = [tabella for tabella in tabelle if tabella[0] != 'sqlite_sequence']
return tabelle
def extract_dataframes(file_path):
conn = sqlite3.connect(file_path)
tabelle = extract_tables(file_path)
dfs = {}
for tabella in tabelle:
nome_tabella = tabella[0]
df = pd.read_sql_query(f"SELECT * FROM {nome_tabella}", conn)
dfs[nome_tabella] = df
conn.close()
return dfs
def carica_sqlite(file_path, db_id):
data_output = {'data_frames': extract_dataframes(file_path),'db': SqliteConnector(relative_db_path=file_path, db_name=db_id)}
return data_output
# Funzione per leggere un file CSV
def load_csv(file):
df = pd.read_csv(file)
return df
# Funzione per leggere un file Excel
def carica_excel(file):
xls = pd.ExcelFile(file)
dfs = {}
for sheet_name in xls.sheet_names:
dfs[sheet_name] = xls.parse(sheet_name)
return dfs
def load_data(data_path : str, db_name : str):
data_output = {'data_frames': {} ,'db': None}
table_name = os.path.splitext(os.path.basename(data_path))[0]
if data_path.endswith(".sqlite") :
data_output = carica_sqlite(data_path, db_name)
elif data_path.endswith(".csv"):
data_output['data_frames'] = {f"{table_name}_table" : load_csv(data_path)}
elif data_path.endswith(".xlsx"):
data_output['data_frames'] = carica_excel(data_path)
else:
raise gr.Error("Formato file non supportato. Carica un file SQLite, CSV o Excel.")
return data_output
def read_api(api_key_path):
with open(api_key_path, "r", encoding="utf-8") as file:
api_key = file.read()
return api_key
def read_models_csv(file_path):
# Reads a CSV file and returns a list of dictionaries
models = [] # Change {} to []
with open(file_path, mode="r", newline="") as file:
reader = csv.DictReader(file)
for row in reader:
row["price"] = float(row["price"]) # Convert price to float
models.append(row) # Append to the list
return models
def csv_to_dict(file_path):
with open(file_path, mode='r', encoding='utf-8') as file:
reader = csv.DictReader(file)
data = []
for row in reader:
if "price" in row:
row["price"] = float(row["price"])
data.append(row)
return data
def increment_filename(filename):
base, ext = os.path.splitext(filename)
numbers = re.findall(r'\d+', base)
if numbers:
max_num = max(map(int, numbers)) + 1
new_base = re.sub(r'(\d+)', lambda m: str(max_num) if int(m.group(1)) == max(map(int, numbers)) else m.group(1), base)
else:
new_base = base + '1'
return new_base + ext
def prepare_prompt(prompt, question, schema, samples):
prompt = prompt.replace("{db_schema}", schema).replace("{question}", question)
prompt += f" Some instances: {samples}"
return prompt
def generate_some_samples(file_path, tbl_name):
conn = sqlite3.connect(file_path)
samples = []
query = f"SELECT * FROM {tbl_name} LIMIT 3"
try:
sample_data = pd.read_sql_query(query, conn)
samples.append(sample_data.to_dict(orient="records"))
#samples.append(str(sample_data))
except Exception as e:
samples.append(f"Error: {e}")
return samples
def load_tables_dict_from_pkl(file_path):
with open(file_path, 'rb') as f:
return pickle.load(f)
def extract_tables_dict(pnp_path):
return load_tables_dict_from_pkl('tables_dict_beaver.pkl')
tables_dict = {}
with open(pnp_path, mode='r', encoding='utf-8') as file:
reader = csv.DictReader(file)
tbl_db_pairs = set() # Use a set to avoid duplicates
for row in reader:
tbl_name = row.get("tbl_name")
db_path = row.get("db_path")
if tbl_name and db_path:
tbl_db_pairs.add((tbl_name, db_path)) # Add the pair to the set
for tbl_name, db_path in list(tbl_db_pairs):
if tbl_name and db_path:
connector = sqlite3.connect(db_path)
query = f"SELECT * FROM {tbl_name} LIMIT 5"
try:
df = pd.read_sql_query(query, connector)
tables_dict[tbl_name] = df
except Exception as e:
tables_dict[tbl_name] = pd.DataFrame({"Error": [str(e)]}) # DataFrame con messaggio di errore
#with open('tables_dict_beaver.pkl', 'wb') as f:
# pickle.dump(tables_dict, f)
return tables_dict
def extract_answer(df):
if "query" not in df.columns or "db_path" not in df.columns:
raise ValueError("The DataFrame must contain 'query' and 'data_path' columns.")
answers = []
for _, row in df.iterrows():
query = row["query"]
db_schema = row["db_schema"]
#db_path = row["db_path"]
try:
conn = utils_get_db_tables_info.create_db_temp(db_schema)
result = pd.read_sql_query(query, conn)
answer = result.values.tolist() # Convert the DataFrame to a list of lists
answers.append(answer)
conn.close()
except Exception as e:
answers.append(f"Error: {e}")
df["target_answer"] = answers
return df
evaluator = {
"cell_precision": CellPrecision(),
"cell_recall": CellRecall(),
"tuple_cardinality": TupleCardinality(),
"tuple_order": TupleOrder(),
"tuple_constraint": TupleConstraint(),
"execution_accuracy": ExecutionAccuracy(),
"valid_efficency_score": ValidEfficiencyScore()
}
def evaluate_answer(df):
for metric_name, metric in evaluator.items():
results = []
for _, row in df.iterrows():
target = row["target_answer"]
predicted = row["predicted_answer"]
try:
result = metric.run_metric(target = target, prediction = predicted)
except Exception as e:
result = None
results.append(result)
df[metric_name] = results
return df
models = [
"gpt-4o-mini",
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
]
def crop_entries_per_token(entries_list, model, prompt: str | None = None):
#open_ai_models = ["gpt-3.5", "gpt-4o-mini"]
dimension = 2048
#enties_string = [", ".join(map(str, entry)) for entry in entries_list]
if prompt:
entries_string = prompt.join(entries_list)
else:
entries_string = " ".join(entries_list)
#if model in ["deepseek-ai/DeepSeek-R1-Distill-Llama-70B" ,"gpt-4o-mini" ] :
#tokenizer = tiktoken.encoding_for_model("gpt-4o-mini")
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "deepseek-ai/DeepSeek-R1-Distill-Llama-70B")
tokens = tokenizer.encode(entries_string)
number_of_tokens = len(tokens)
if number_of_tokens > dimension and len(entries_list) > 4:
entries_list = entries_list[:round(len(entries_list)/2)]
entries_list = crop_entries_per_token(entries_list, model)
return entries_list