Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import pandas as pd | |
import os | |
import sys | |
from qatch.connectors.sqlite_connector import SqliteConnector | |
from qatch.generate_dataset.orchestrator_generator import OrchestratorGenerator | |
from qatch.evaluate_dataset.orchestrator_evaluator import OrchestratorEvaluator | |
#from predictor.orchestrator_predictor import OrchestratorPredictor | |
import utils_get_db_tables_info | |
import utilities as us | |
import time | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import plotly.colors as pc | |
with open('style.css', 'r') as file: | |
css = file.read() | |
# DataFrame di default | |
df_default = pd.DataFrame({ | |
'Name': ['Alice', 'Bob', 'Charlie'], | |
'Age': [25, 30, 35], | |
'City': ['New York', 'Los Angeles', 'Chicago'] | |
}) | |
models_path = "models.csv" | |
# Variabile globale per tenere traccia dei dati correnti | |
df_current = df_default.copy() | |
input_data = { | |
'input_method': "", | |
'data_path': "", | |
'db_name': "", | |
'data': { | |
'data_frames': {}, # dictionary of dataframes | |
'db': None # SQLITE3 database object | |
}, | |
'models': [] | |
} | |
def load_data(file, path, use_default): | |
"""Carica i dati da un file, un percorso o usa il DataFrame di default.""" | |
global df_current | |
if use_default: | |
input_data["input_method"] = 'default' | |
input_data["data_path"] = os.path.join(".", "data", "data_interface", "mytable.sqlite") | |
input_data["db_name"] = os.path.splitext(os.path.basename(input_data["data_path"]))[0] | |
input_data["data"]['data_frames'] = {'MyTable': df_current} | |
if( input_data["data"]['data_frames']): | |
table2primary_key = {} | |
for table_name, df in input_data["data"]['data_frames'].items(): | |
# Assign primary keys for each table | |
table2primary_key[table_name] = 'id' | |
input_data["data"]["db"] = SqliteConnector( | |
relative_db_path=input_data["data_path"], | |
db_name=input_data["db_name"], | |
tables= input_data["data"]['data_frames'], | |
table2primary_key=table2primary_key | |
) | |
df_current = df_default.copy() # Ripristina i dati di default | |
return input_data["data"]['data_frames'] | |
selected_inputs = sum([file is not None, bool(path), use_default]) | |
if selected_inputs > 1: | |
return 'Errore: Selezionare solo un metodo di input alla volta.' | |
if file is not None: | |
try: | |
input_data["input_method"] = 'uploaded_file' | |
input_data["db_name"] = os.path.splitext(os.path.basename(file))[0] | |
input_data["data_path"] = os.path.join(".", "data", "data_interface",f"{input_data['db_name']}.sqlite") | |
input_data["data"] = us.load_data(file, input_data["db_name"]) | |
df_current = input_data["data"]['data_frames'].get('MyTable', df_default) # Carica il DataFrame | |
if( input_data["data"]['data_frames']): | |
table2primary_key = {} | |
for table_name, df in input_data["data"]['data_frames'].items(): | |
# Assign primary keys for each table | |
table2primary_key[table_name] = 'id' | |
input_data["data"]["db"] = SqliteConnector( | |
relative_db_path=input_data["data_path"], | |
db_name=input_data["db_name"], | |
tables= input_data["data"]['data_frames'], | |
table2primary_key=table2primary_key | |
) | |
return input_data["data"]['data_frames'] | |
except Exception as e: | |
return f'Errore nel caricamento del file: {e}' | |
""" | |
if path: | |
if not os.path.exists(path): | |
return 'Errore: Il percorso specificato non esiste.' | |
try: | |
input_data["input_method"] = 'uploaded_file' | |
input_data["data_path"] = path | |
input_data["db_name"] = os.path.splitext(os.path.basename(path))[0] | |
input_data["data"] = us.load_data(input_data["data_path"], input_data["db_name"]) | |
df_current = input_data["data"]['data_frames'].get('MyTable', df_default) # Carica il DataFrame | |
return input_data["data"]['data_frames'] | |
except Exception as e: | |
return f'Errore nel caricamento del file dal percorso: {e}' | |
""" | |
return input_data["data"]['data_frames'] | |
def preview_default(use_default): | |
"""Mostra il DataFrame di default se il checkbox Γ¨ selezionato.""" | |
if use_default: | |
return df_default # Mostra il DataFrame di default | |
return df_current # Mostra il DataFrame corrente, che potrebbe essere stato modificato | |
def update_df(new_df): | |
"""Aggiorna il DataFrame corrente.""" | |
global df_current # Usa la variabile globale per aggiornarla | |
df_current = new_df | |
return df_current | |
def open_accordion(target): | |
# Apre uno e chiude l'altro | |
if target == "reset": | |
df_current = df_default.copy() | |
input_data['input_method'] = "" | |
input_data['data_path'] = "" | |
input_data['db_name'] = "" | |
input_data['data']['data_frames'] = {} | |
input_data['data']['db'] = None | |
input_data['models'] = [] | |
return gr.update(open=True), gr.update(open=False, visible=False), gr.update(open=False, visible=False), gr.update(open=False, visible=False), gr.update(open=False, visible=False), gr.update(value=False), gr.update(value=None) | |
elif target == "model_selection": | |
return gr.update(open=False), gr.update(open=False), gr.update(open=True, visible=True), gr.update(open=False), gr.update(open=False) | |
# Interfaccia Gradio | |
with gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css') as interface: | |
gr.Markdown("# QATCH") | |
data_state = gr.State(None) # Memorizza i dati caricati | |
upload_acc = gr.Accordion("Upload your data section", open=True, visible=True) | |
select_table_acc = gr.Accordion("Select tables", open=False, visible=False) | |
select_model_acc = gr.Accordion("Select models", open=False, visible=False) | |
qatch_acc = gr.Accordion("QATCH execution", open=False, visible=False) | |
metrics_acc = gr.Accordion("Metrics", open=False, visible=False) | |
#metrics_acc = gr.Accordion("Metrics", open=False, visible=False, render=False) | |
################################# | |
# PARTE DI INSERIMENTO DEL DB # | |
################################# | |
with upload_acc: | |
gr.Markdown("## Caricamento dei Dati") | |
file_input = gr.File(label="Trascina e rilascia un file", file_types=[".csv", ".xlsx", ".sqlite"]) | |
with gr.Row(): | |
default_checkbox = gr.Checkbox(label="Usa DataFrame di default") | |
preview_output = gr.DataFrame(interactive=True, visible=True, value=df_default) | |
submit_button = gr.Button("Carica Dati", interactive=False) # Disabilitato di default | |
output = gr.JSON(visible=False) # Output dizionario | |
# Funzione per abilitare il bottone se sono presenti dati da caricare | |
def enable_submit(file, use_default): | |
return gr.update(interactive=bool(file or use_default)) | |
# Funzione per deselezionare il checkbox se viene caricato un file | |
def deselect_default(file): | |
if file: | |
return gr.update(value=False) | |
return gr.update() | |
# Abilita il bottone quando i campi di input sono valorizzati | |
file_input.change(fn=enable_submit, inputs=[file_input, default_checkbox], outputs=[submit_button]) | |
default_checkbox.change(fn=enable_submit, inputs=[file_input, default_checkbox], outputs=[submit_button]) | |
# Mostra l'anteprima del DataFrame di default quando il checkbox Γ¨ selezionato | |
default_checkbox.change(fn=preview_default, inputs=[default_checkbox], outputs=[preview_output]) | |
preview_output.change(fn=update_df, inputs=[preview_output], outputs=[preview_output]) | |
# Deseleziona il checkbox quando viene caricato un file | |
file_input.change(fn=deselect_default, inputs=[file_input], outputs=[default_checkbox]) | |
def handle_output(file, use_default): | |
"""Gestisce l'output quando si preme il bottone 'Carica Dati'.""" | |
result = load_data(file, None, use_default) | |
if isinstance(result, dict): # Se result Γ¨ un dizionario di DataFrame | |
if len(result) == 1: # Se c'Γ¨ solo una tabella | |
return ( | |
gr.update(visible=False), # Nasconde l'output JSON | |
result, # Salva lo stato dei dati | |
gr.update(visible=False), # Nasconde la selezione tabella | |
result, # Mantiene lo stato dei dati | |
gr.update(interactive=False), # Disabilita il pulsante di submit | |
gr.update(visible=True, open=True), # Passa direttamente a select_model_acc | |
gr.update(visible=True, open=False) | |
) | |
else: | |
return ( | |
gr.update(visible=False), | |
result, | |
gr.update(open=True, visible=True), | |
result, | |
gr.update(interactive=False), | |
gr.update(visible=False), # Mantiene il comportamento attuale | |
gr.update(visible=True, open=True) | |
) | |
else: | |
return ( | |
gr.update(visible=False), | |
None, | |
gr.update(open=False, visible=True), | |
None, | |
gr.update(interactive=True), | |
gr.update(visible=False), | |
gr.update(visible=True, open=True) | |
) | |
submit_button.click( | |
fn=handle_output, | |
inputs=[file_input, default_checkbox], | |
outputs=[output, output, select_table_acc, data_state, submit_button, select_model_acc, upload_acc] | |
) | |
###################################### | |
# PARTE DI SELEZIONE DELLE TABELLE # | |
###################################### | |
with select_table_acc: | |
table_selector = gr.CheckboxGroup(choices=[], label="Seleziona le tabelle da visualizzare", value=[]) | |
table_outputs = [gr.DataFrame(label=f"Tabella {i+1}", interactive=True, visible=False) for i in range(5)] | |
selected_table_names = gr.Textbox(label="Tabelle selezionate", visible=False, interactive=False) | |
# Bottone di selezione modelli (inizialmente disabilitato) | |
open_model_selection = gr.Button("Choose your models", interactive=False) | |
def update_table_list(data): | |
"""Aggiorna dinamicamente la lista delle tabelle disponibili.""" | |
if isinstance(data, dict) and data: | |
table_names = list(data.keys()) # Ritorna solo i nomi delle tabelle | |
return gr.update(choices=table_names, value=[]) # Reset delle selezioni | |
return gr.update(choices=[], value=[]) | |
def show_selected_tables(data, selected_tables): | |
"""Mostra solo le tabelle selezionate dall'utente e abilita il bottone.""" | |
updates = [] | |
if isinstance(data, dict) and data: | |
available_tables = list(data.keys()) # Nomi effettivamente disponibili | |
selected_tables = [t for t in selected_tables if t in available_tables] # Filtra selezioni valide | |
tables = {name: data[name] for name in selected_tables} # Filtra i DataFrame | |
for i, (name, df) in enumerate(tables.items()): | |
updates.append(gr.update(value=df, label=f"Tabella: {name}", visible=True)) | |
# Se ci sono meno di 5 tabelle, nascondi gli altri DataFrame | |
for _ in range(len(tables), 5): | |
updates.append(gr.update(visible=False)) | |
else: | |
updates = [gr.update(value=pd.DataFrame(), visible=False) for _ in range(5)] | |
# Abilitare/disabilitare il bottone in base alle selezioni | |
button_state = bool(selected_tables) # True se almeno una tabella Γ¨ selezionata, False altrimenti | |
updates.append(gr.update(interactive=button_state)) # Aggiorna stato bottone | |
return updates | |
def show_selected_table_names(selected_tables): | |
"""Mostra i nomi delle tabelle selezionate quando si preme il bottone.""" | |
if selected_tables: | |
return gr.update(value=", ".join(selected_tables), visible=False) | |
return gr.update(value="", visible=False) | |
# Aggiorna automaticamente la lista delle checkbox quando `data_state` cambia | |
data_state.change(fn=update_table_list, inputs=[data_state], outputs=[table_selector]) | |
# Aggiorna le tabelle visibili e lo stato del bottone in base alle selezioni dell'utente | |
table_selector.change(fn=show_selected_tables, inputs=[data_state, table_selector], outputs=table_outputs + [open_model_selection]) | |
# Mostra la lista delle tabelle selezionate quando si preme "Choose your models" | |
open_model_selection.click(fn=show_selected_table_names, inputs=[table_selector], outputs=[selected_table_names]) | |
open_model_selection.click(open_accordion, inputs=gr.State("model_selection"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc]) | |
#################################### | |
# PARTE DI SELEZIONE DEL MODELLO # | |
#################################### | |
with select_model_acc: | |
gr.Markdown("**Model Selection**") | |
# Supponiamo che `us.read_models_csv` restituisca anche il percorso dell'immagine | |
model_list_dict = us.read_models_csv(models_path) | |
model_list = [model["code"] for model in model_list_dict] | |
model_images = [model["image_path"] for model in model_list_dict] | |
model_checkboxes = [] | |
rows = [] | |
# Creazione dinamica di checkbox con immagini (3 per riga) | |
for i in range(0, len(model_list), 3): | |
with gr.Row(): | |
cols = [] | |
for j in range(3): | |
if i + j < len(model_list): | |
model = model_list[i + j] | |
image_path = model_images[i + j] | |
with gr.Column(): | |
gr.Image(image_path, show_label=False) | |
checkbox = gr.Checkbox(label=model, value=False) | |
model_checkboxes.append(checkbox) | |
cols.append(checkbox) | |
rows.append(cols) | |
selected_models_output = gr.JSON(visible=False) | |
# Funzione per ottenere i modelli selezionati | |
def get_selected_models(*model_selections): | |
selected_models = [model for model, selected in zip(model_list, model_selections) if selected] | |
input_data['models'] = selected_models | |
button_state = bool(selected_models) # True se almeno un modello Γ¨ selezionato, False altrimenti | |
return selected_models, gr.update(open=True, visible=True), gr.update(interactive=button_state) | |
# Bottone di submit (inizialmente disabilitato) | |
submit_models_button = gr.Button("Submit Models", interactive=False) | |
# Collegamento dei checkbox agli eventi di selezione | |
for checkbox in model_checkboxes: | |
checkbox.change( | |
fn=get_selected_models, | |
inputs=model_checkboxes, | |
outputs=[selected_models_output, select_model_acc, submit_models_button] | |
) | |
submit_models_button.click( | |
fn=lambda *args: (get_selected_models(*args), gr.update(open=False, visible=True), gr.update(open=True, visible=True)), | |
inputs=model_checkboxes, | |
outputs=[selected_models_output, select_model_acc, qatch_acc] | |
) | |
reset_data = gr.Button("Back to upload data section") | |
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc, default_checkbox, file_input]) | |
############################### | |
# PARTE DI ESECUZIONE QATCH # | |
############################### | |
with qatch_acc: | |
def change_text(text): | |
return text | |
def qatch_flow(): | |
orchestrator_generator = OrchestratorGenerator() | |
#TODO add to target_df column target_df["columns_used"], tables selection | |
#print(input_data['data']['db']) | |
target_df = orchestrator_generator.generate_dataset(connector=input_data['data']['db']) | |
schema_text = utils_get_db_tables_info.utils_extract_db_schema_as_string( | |
db_id = input_data["db_name"], | |
base_path = input_data["data_path"], | |
normalize=False, | |
sql=None | |
) | |
# TODO QUERY PREDICTION | |
predictions_dict = {model: pd.DataFrame(columns=['id', 'question', 'predicted_sql', 'time', 'query', 'db_path']) for model in model_list} | |
metrics_conc = pd.DataFrame() | |
for model in input_data["models"]: | |
for index, row in target_df.iterrows(): | |
if len(target_df) != 0: load_value = f"##Loading... {round((index + 1) / len(target_df) * 100, 2)}%" | |
else: load_value = "##Loading..." | |
question = row['query'] | |
#yield gr.Textbox(question), gr.Textbox(), *[predictions_dict[model] for model in input_data["models"]], None | |
yield gr.Markdown(value=load_value), gr.Textbox(question), gr.Textbox(), metrics_conc, *[predictions_dict[model] for model in model_list] | |
start_time = time.time() | |
# Simulazione della predizione | |
time.sleep(0.03) | |
prediction = "Prediction_placeholder" | |
# Esegui la predizione reale qui | |
# prediction = predictor.run(model, schema_text, question) | |
end_time = time.time() | |
# Crea una nuova riga come dataframe | |
new_row = pd.DataFrame([{ | |
'id': index, | |
'question': question, | |
'predicted_sql': prediction, | |
'time': end_time - start_time, | |
'query': row["query"], | |
'db_path': input_data["data_path"] | |
}]).dropna(how="all") # Rimuove solo righe completamente vuote | |
#TODO con un for | |
for col in target_df.columns: | |
if col not in new_row.columns: | |
new_row[col] = row[col] | |
# Aggiorna il dataframe corrispondente al modello man mano | |
if not new_row.empty: | |
predictions_dict[model] = pd.concat([predictions_dict[model], new_row], ignore_index=True) | |
#yield gr.Textbox(), gr.Textbox(prediction), *[predictions_dict[model] for model in input_data["models"]], None | |
yield gr.Markdown(value=load_value), gr.Textbox(), gr.Textbox(prediction), metrics_conc, *[predictions_dict[model] for model in model_list] | |
#END | |
evaluator = OrchestratorEvaluator() | |
for model in input_data["models"]: | |
metrics_df_model = evaluator.evaluate_df( | |
df=predictions_dict[model], | |
target_col_name="query", #'<target_column_name>', | |
prediction_col_name="predicted_sql", #'<prediction_column_name>', | |
db_path_name= "db_path", #'<db_path_column_name>' | |
) | |
metrics_df_model['model'] = model | |
metrics_conc = pd.concat([metrics_conc, metrics_df_model], ignore_index=True) | |
if 'valid_efficiency_score' not in metrics_conc.columns: | |
metrics_conc['valid_efficiency_score'] = metrics_conc['VES'] | |
yield gr.Markdown(), gr.Textbox(), gr.Textbox(), metrics_conc, *[predictions_dict[model] for model in model_list] | |
#Loading Bar | |
with gr.Row(): | |
#progress = gr.Progress() | |
variable = gr.Markdown() | |
#NL -> MODEL -> Generated Quesy | |
with gr.Row(): | |
with gr.Column(): | |
question_display = gr.Textbox() | |
with gr.Column(): | |
gr.Image() | |
with gr.Column(): | |
prediction_display = gr.Textbox() | |
dataframe_per_model = {} | |
with gr.Tabs() as model_tabs: | |
#for model in input_data["models"]: | |
for model in model_list: | |
#TODO fix model tabs | |
with gr.TabItem(model): | |
gr.Markdown(f"**Results for {model}**") | |
dataframe_per_model[model] = gr.DataFrame() | |
#question_display.change(fn=change_text, inputs=[gr.State(question)], outputs=[question_display]) | |
selected_models_display = gr.JSON(label="Modelli selezionati") | |
metrics_df = gr.DataFrame(visible=False) | |
metrics_df_out= gr.DataFrame(visible=False) | |
submit_models_button.click( | |
fn=qatch_flow, | |
inputs=[], | |
outputs=[variable, question_display, prediction_display, metrics_df] + list(dataframe_per_model.values()) | |
) | |
submit_models_button.click( | |
fn=lambda: gr.update(value=input_data), | |
outputs=[selected_models_display] | |
) | |
#Funziona per METRICS | |
metrics_df.change(fn=change_text, inputs=[metrics_df], outputs=[metrics_df_out]) | |
# def change_tab(selected_models_output, model_tabs): | |
# for model in model_list: | |
# if model in selected_models_output: | |
# pass#model_tabs[model].visible = True | |
# else: | |
# pass#model_tabs[model].visible = False | |
# return model_tabs | |
# selected_models_output.change(fn=change_tab, inputs=[selected_models_output, model_tabs], outputs=[]) | |
proceed_to_metrics_button = gr.Button("Proceed to Metrics") | |
proceed_to_metrics_button.click( | |
fn=lambda: (gr.update(open=False, visible=True), gr.update(open=True, visible=True)), | |
outputs=[qatch_acc, metrics_acc] | |
) | |
reset_data = gr.Button("Back to upload data section") | |
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc, default_checkbox, file_input]) | |
####################################### | |
# METRICS VISUALIZATION SECTION # | |
####################################### | |
with metrics_acc: | |
#confirmation_text = gr.Markdown("## Metrics successfully loaded") | |
data_path = 'test_results.csv' | |
def function_metrics(metrics_df_out): | |
def load_data_csv_es(): | |
return pd.read_csv(data_path) | |
#return metrics_df_out | |
def calculate_average_metrics(df, selected_metrics): | |
df['avg_metric'] = df[selected_metrics].mean(axis=1) | |
return df | |
def generate_model_colors(): | |
"""Generates a unique color map for models in the dataset.""" | |
df = load_data_csv_es() | |
unique_models = df['model'].unique() # Extract unique models | |
num_models = len(unique_models) | |
# Use the Plotly color scale (you can change it if needed) | |
color_palette = pc.qualitative.Plotly # ['#636EFA', '#EF553B', '#00CC96', ...] | |
# If there are more models than colors, cycle through them | |
colors = {model: color_palette[i % len(color_palette)] for i, model in enumerate(unique_models)} | |
return colors | |
MODEL_COLORS = generate_model_colors() | |
# BAR CHART FOR AVERAGE METRICS WITH UPDATE FUNCTION | |
def plot_metric(df, selected_metrics, group_by, selected_models): | |
df = df[df['model'].isin(selected_models)] | |
df = calculate_average_metrics(df, selected_metrics) | |
# Ensure the group_by value is always valid | |
if group_by not in [["tbl_name", "model"], ["model"]]: | |
group_by = ["tbl_name", "model"] # Default | |
avg_metrics = df.groupby(group_by)['avg_metric'].mean().reset_index() | |
fig = px.bar( | |
avg_metrics, | |
x=group_by[0], | |
y='avg_metric', | |
color='model', | |
color_discrete_map=MODEL_COLORS, | |
barmode='group', | |
title=f'Average metric per {group_by[0]} π', | |
labels={group_by[0]: group_by[0].capitalize(), 'avg_metric': 'Average Metric'}, | |
template='plotly_dark' | |
) | |
return fig | |
def update_plot(selected_metrics, group_by, selected_models): | |
df = load_data_csv_es() | |
return plot_metric(df, selected_metrics, group_by, selected_models) | |
# RADAR CHART FOR AVERAGE METRICS PER MODEL WITH UPDATE FUNCTION | |
def plot_radar(df, selected_models): | |
# Filter only selected models | |
df = df[df['model'].isin(selected_models)] | |
# Select relevant metrics | |
selected_metrics = ["cell_precision", "cell_recall", "execution_accuracy", "tuple_cardinality", "tuple_constraint"] | |
# Compute average metrics per test_category and model | |
df = calculate_average_metrics(df, selected_metrics) | |
avg_metrics = df.groupby(['model', 'test_category'])['avg_metric'].mean().reset_index() | |
# Check if data is available | |
if avg_metrics.empty: | |
print("Error: No data available to compute averages.") | |
return go.Figure() | |
fig = go.Figure() | |
categories = avg_metrics['test_category'].unique() | |
for model in selected_models: | |
model_data = avg_metrics[avg_metrics['model'] == model] | |
# Build a list of values for each category (if a value is missing, set it to 0) | |
values = [ | |
model_data[model_data['test_category'] == cat]['avg_metric'].values[0] | |
if cat in model_data['test_category'].values else 0 | |
for cat in categories | |
] | |
fig.add_trace(go.Scatterpolar( | |
r=values, | |
theta=categories, | |
fill='toself', | |
name=model, | |
line=dict(color=MODEL_COLORS.get(model, "gray")) | |
)) | |
fig.update_layout( | |
polar=dict(radialaxis=dict(visible=True, range=[0, max(avg_metrics['avg_metric'].max(), 0.5)])), # Set the radar range | |
title='βοΈ Radar Plot of Metrics per Model (Average per Category) βοΈ ', | |
template='plotly_dark', | |
width=700, height=700 | |
) | |
return fig | |
def update_radar(selected_models): | |
df = load_data_csv_es() | |
return plot_radar(df, selected_models) | |
# LINE CHART FOR CUMULATIVE TIME WITH UPDATE FUNCTION | |
def plot_cumulative_flow(df, selected_models): | |
df = df[df['model'].isin(selected_models)] | |
fig = go.Figure() | |
for model in selected_models: | |
model_df = df[df['model'] == model].copy() | |
# Calculate cumulative time | |
model_df['cumulative_time'] = model_df['time'].cumsum() | |
# Calculate cumulative number of queries over time | |
model_df['cumulative_queries'] = range(1, len(model_df) + 1) | |
# Select a color for the model | |
color = MODEL_COLORS.get(model, "gray") # Assigned model color | |
fillcolor = color.replace("rgb", "rgba").replace(")", ", 0.2)") # πΉ Makes the area semi-transparent | |
#color = f"rgba({hash(model) % 256}, {hash(model * 2) % 256}, {hash(model * 3) % 256}, 1)" | |
fig.add_trace(go.Scatter( | |
x=model_df['cumulative_time'], | |
y=model_df['cumulative_queries'], | |
mode='lines+markers', | |
name=model, | |
line=dict(width=2, color=color) | |
)) | |
# Adds the underlying colored area (same color but transparent) | |
""" | |
fig.add_trace(go.Scatter( | |
x=model_df['cumulative_time'], | |
y=model_df['cumulative_queries'], | |
fill='tozeroy', | |
mode='none', | |
showlegend=False, # Hides the area in the legend | |
fillcolor=fillcolor | |
)) | |
""" | |
fig.update_layout( | |
title="Cumulative Query Flow Chart π", | |
xaxis_title="Cumulative Time (s)", | |
yaxis_title="Number of Queries Completed", | |
template='plotly_dark', | |
legend_title="Models" | |
) | |
return fig | |
def update_query_rate(selected_models): | |
df = load_data_csv_es() | |
return plot_cumulative_flow(df, selected_models) | |
# RANKING FOR THE TOP 3 MODELS WITH UPDATE FUNCTION | |
def ranking_text(df, selected_models, ranking_type): | |
#df = load_data_csv_es() | |
df = df[df['model'].isin(selected_models)] | |
df['valid_efficiency_score'] = pd.to_numeric(df['valid_efficiency_score'], errors='coerce') | |
if ranking_type == "valid_efficiency_score": | |
rank_df = df.groupby('model')['valid_efficiency_score'].mean().reset_index() | |
#rank_df = df.groupby('model')['valid_efficiency_score'].mean().reset_index() | |
ascending_order = False # Higher is better | |
elif ranking_type == "time": | |
rank_df = df.groupby('model')['time'].sum().reset_index() | |
rank_df["Ranking Value"] = rank_df["time"].round(2).astype(str) + " s" # Adds "s" for seconds | |
ascending_order = True # For time, lower is better | |
elif ranking_type == "metrics": | |
selected_metrics = ["cell_precision", "cell_recall", "execution_accuracy", "tuple_cardinality", "tuple_constraint"] | |
df = calculate_average_metrics(df, selected_metrics) | |
rank_df = df.groupby('model')['avg_metric'].mean().reset_index() | |
ascending_order = False # Higher is better | |
if ranking_type != "time": | |
rank_df.rename(columns={rank_df.columns[1]: "Ranking Value"}, inplace=True) | |
rank_df["Ranking Value"] = rank_df["Ranking Value"].round(2) # Round values except for time | |
# Sort based on the selected criterion | |
rank_df = rank_df.sort_values(by="Ranking Value", ascending=ascending_order).reset_index(drop=True) | |
# Select only the top 3 models | |
rank_df = rank_df.head(3) | |
# Add medal icons for the top 3 | |
medals = ["π₯", "π₯", "π₯"] | |
rank_df.insert(0, "Rank", medals[:len(rank_df)]) | |
# Build the formatted ranking string | |
ranking_str = "## π Model Ranking\n" | |
for _, row in rank_df.iterrows(): | |
ranking_str += f"<span style='font-size:18px;'>{row['Rank']} {row['model']} ({row['Ranking Value']})</span><br>\n" | |
return ranking_str | |
def update_ranking_text(selected_models, ranking_type): | |
df = load_data_csv_es() | |
return ranking_text(df, selected_models, ranking_type) | |
# RANKING FOR THE 3 WORST RESULTS WITH UPDATE FUNCTION | |
def worst_cases_text(df, selected_models): | |
df = df[df['model'].isin(selected_models)] | |
selected_metrics = ["cell_precision", "cell_recall", "execution_accuracy", "tuple_cardinality", "tuple_constraint"] | |
df = calculate_average_metrics(df, selected_metrics) | |
worst_cases_df = df.groupby(['model', 'tbl_name', 'test_category', 'question', 'query', 'predicted_sql'])['avg_metric'].mean().reset_index() | |
worst_cases_df = worst_cases_df.sort_values(by="avg_metric", ascending=True).reset_index(drop=True) | |
worst_cases_top_3 = worst_cases_df.head(3) | |
worst_cases_top_3["avg_metric"] = worst_cases_top_3["avg_metric"].round(2) | |
worst_str = "## β Top 3 Worst Cases\n" | |
medals = ["π₯", "π₯", "π₯"] | |
for i, row in worst_cases_top_3.iterrows(): | |
worst_str += ( | |
f"<span style='font-size:18px;'><b>{medals[i]} {row['model']} - {row['tbl_name']} - {row['test_category']}</b> ({row['avg_metric']})</span> \n" | |
f"<span style='font-size:16px;'>- <b>Question:</b> {row['question']}</span> \n" | |
f"<span style='font-size:16px;'>- <b>Original Query:</b> `{row['query']}`</span> \n" | |
f"<span style='font-size:16px;'>- <b>Predicted SQL:</b> `{row['predicted_sql']}`</span> \n\n" | |
) | |
return worst_str | |
def update_worst_cases_text(selected_models): | |
df = load_data_csv_es() | |
return worst_cases_text(df, selected_models) | |
metrics = ["cell_precision", "cell_recall", "execution_accuracy", "tuple_cardinality", "tuple_constraint"] | |
group_options = { | |
"Table": ["tbl_name", "model"], | |
"Model": ["model"] | |
} | |
df_initial = load_data_csv_es() | |
models = df_initial['model'].unique().tolist() | |
#with gr.Blocks(theme=gr.themes.Default(primary_hue='blue')) as demo: | |
gr.Markdown("""## π Model Performance Analysis π | |
Select one or more metrics to calculate the average and visualize histograms and radar plots. | |
""") | |
# Options selection section | |
with gr.Row(): | |
metric_multiselect = gr.CheckboxGroup(choices=metrics, label="Select metrics", value=metrics) | |
model_multiselect = gr.CheckboxGroup(choices=models, label="Select models", value=models) | |
group_radio = gr.Radio(choices=list(group_options.keys()), label="Select grouping", value="Model") | |
output_plot = gr.Plot() | |
query_rate_plot = gr.Plot(value=update_query_rate(models)) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
radar_plot = gr.Plot(value=update_radar(models)) | |
with gr.Column(scale=1): | |
ranking_type_radio = gr.Radio( | |
["valid_efficiency_score", "time", "metrics"], | |
label="Choose ranking criteria", | |
value="valid_efficiency_score" | |
) | |
ranking_text_display = gr.Markdown(value=update_ranking_text(models, "valid_efficiency_score")) | |
worst_cases_display = gr.Markdown(value=update_worst_cases_text(models)) | |
# Callback functions for updating charts | |
def on_change(selected_metrics, selected_group, selected_models): | |
return update_plot(selected_metrics, group_options[selected_group], selected_models) | |
def on_radar_change(selected_models): | |
return update_radar(selected_models) | |
#metrics_df_out.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot) | |
metric_multiselect.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot) | |
group_radio.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot) | |
model_multiselect.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot) | |
model_multiselect.change(update_radar, inputs=model_multiselect, outputs=radar_plot) | |
model_multiselect.change(update_ranking_text, inputs=[model_multiselect, ranking_type_radio], outputs=ranking_text_display) | |
ranking_type_radio.change(update_ranking_text, inputs=[model_multiselect, ranking_type_radio], outputs=ranking_text_display) | |
model_multiselect.change(update_worst_cases_text, inputs=model_multiselect, outputs=worst_cases_display) | |
model_multiselect.change(update_query_rate, inputs=[model_multiselect], outputs=query_rate_plot) | |
reset_data = gr.Button("Back to upload data section") | |
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc, default_checkbox, file_input]) | |
# Hidden button to force UI refresh on load | |
force_update_button = gr.Button("", visible=False) | |
# State variable to track first load | |
load_trigger = gr.State(value=True) | |
# Function to force initial load | |
def force_update(is_first_load): | |
if is_first_load: | |
return ( | |
update_plot(metrics, group_options["Model"], models), | |
update_query_rate(models), | |
update_radar(models), | |
update_ranking_text(models, "valid_efficiency_score"), | |
update_worst_cases_text(models), | |
False # Change state to prevent continuous reloads | |
) | |
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), False | |
# The invisible button forces chart loading only the first time | |
force_update_button.click( | |
fn=force_update, | |
inputs=[load_trigger], | |
outputs=[output_plot, query_rate_plot, radar_plot, ranking_text_display, worst_cases_display, load_trigger] | |
) | |
# Simulate button click when UI loads | |
with gr.Blocks() as demo: | |
demo.load( | |
lambda: force_update(True), | |
outputs=[output_plot, query_rate_plot, radar_plot, ranking_text_display, worst_cases_display, load_trigger] | |
) | |
interface.launch() |