qatch-demo / app.py
franceth's picture
Initial commit running application
04decb3 verified
raw
history blame
26.1 kB
import gradio as gr
import pandas as pd
import os
from qatch.connectors.sqlite_connector import SqliteConnector
from qatch.generate_dataset.orchestrator_generator import OrchestratorGenerator
from qatch.evaluate_dataset.orchestrator_evaluator import OrchestratorEvaluator
from predictor.orchestrator_predictor import OrchestratorPredictor
import utilities as us
import plotly.express as px
import plotly.graph_objects as go
with open('style.css', 'r') as file:
css = file.read()
# DataFrame di default
df_default = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35],
'City': ['New York', 'Los Angeles', 'Chicago']
})
models_path = "models.csv"
# Variabile globale per tenere traccia dei dati correnti
df_current = df_default.copy()
input_data = {
'input_method': "",
'data_path': "",
'db_name': "",
'data': {
'data_frames': {}, # dictionary of dataframes
'db': None # SQLITE3 database object
},
'models': []
}
def load_data(file, path, use_default):
"""Carica i dati da un file, un percorso o usa il DataFrame di default."""
global df_current
if use_default:
input_data["input_method"] = 'default'
input_data["data_path"] = os.path.join(".", "data", "datainterface", "mytable.sqlite")
input_data["db_name"] = os.path.splitext(os.path.basename(input_data["data_path"]))[0]
input_data["data"]['data_frames'] = {'MyTable': df_current}
#TODO assegna il db a input_data["data"]['db']
df_current = df_default.copy() # Ripristina i dati di default
return input_data["data"]['data_frames']
selected_inputs = sum([file is not None, bool(path), use_default])
if selected_inputs > 1:
return 'Errore: Selezionare solo un metodo di input alla volta.'
if file is not None:
try:
input_data["input_method"] = 'uploaded_file'
input_data["db_name"] = os.path.splitext(os.path.basename(file))[0]
input_data["data_path"] = os.path.join(".", "data", f"data_interface{input_data['db_name']}.sqlite")
input_data["data"] = us.load_data(input_data["data_path"], input_data["db_name"])
df_current = input_data["data"]['data_frames'].get('MyTable', df_default) # Carica il DataFrame
print(df_current)
print(input_data["data"])
if( input_data["data"]['data_frames'] and not input_data["data"]['db']):
table2primary_key = {}
print("ok")
for table_name, df in input_data["data"]['data_frames'].items():
# Assign primary keys for each table
table2primary_key[table_name] = 'id'
print("ok2")
input_data["data"]["db"] = SqliteConnector(
relative_db_path=input_data["data_path"],
db_name=input_data["db_name"],
tables= input_data["data"]['data_frames'],
table2primary_key=table2primary_key
)
print(input_data["data"]["db"])
return input_data["data"]['data_frames']
except Exception as e:
return f'Errore nel caricamento del file: {e}'
if path:
if not os.path.exists(path):
return 'Errore: Il percorso specificato non esiste.'
try:
input_data["input_method"] = 'uploaded_file'
input_data["data_path"] = path
input_data["db_name"] = os.path.splitext(os.path.basename(path))[0]
input_data["data"] = us.load_data(input_data["data_path"], input_data["db_name"])
df_current = input_data["data"]['data_frames'].get('MyTable', df_default) # Carica il DataFrame
return input_data["data"]['data_frames']
except Exception as e:
return f'Errore nel caricamento del file dal percorso: {e}'
return input_data["data"]['data_frames']
def preview_default(use_default):
"""Mostra il DataFrame di default se il checkbox è selezionato."""
if use_default:
return df_default # Mostra il DataFrame di default
return df_current # Mostra il DataFrame corrente, che potrebbe essere stato modificato
def update_df(new_df):
"""Aggiorna il DataFrame corrente."""
global df_current # Usa la variabile globale per aggiornarla
df_current = new_df
return df_current
def open_accordion(target):
# Apre uno e chiude l'altro
if target == "reset":
return gr.update(open=True), gr.update(open=False, visible=False), gr.update(open=False, visible=False), gr.update(open=False, visible=False), gr.update(open=False, visible=False)
elif target == "model_selection":
return gr.update(open=False), gr.update(open=False), gr.update(open=True, visible=True), gr.update(open=False), gr.update(open=False)
# Interfaccia Gradio
interface = gr.Blocks(theme='d8ahazard/rd_blue', css_paths='style.css')
with interface:
gr.Markdown("# QATCH")
data_state = gr.State(None) # Memorizza i dati caricati
upload_acc = gr.Accordion("Upload your data section", open=True, visible=True)
select_table_acc = gr.Accordion("Select tables", open=False, visible=False)
select_model_acc = gr.Accordion("Select models", open=False, visible=False)
qatch_acc = gr.Accordion("QATCH execution", open=False, visible=False)
metrics_acc = gr.Accordion("Metrics", open=False, visible=False)
#################################
# PARTE DI INSERIMENTO DEL DB #
#################################
with upload_acc:
gr.Markdown("## Caricamento dei Dati")
file_input = gr.File(label="Trascina e rilascia un file", file_types=[".csv", ".xlsx", ".sqlite"])
path_input = gr.Textbox(label="Oppure inserisci il percorso locale del file")
with gr.Row():
default_checkbox = gr.Checkbox(label="Usa DataFrame di default")
preview_output = gr.DataFrame(interactive=True, visible=True, value=df_default)
submit_button = gr.Button("Carica Dati", interactive=False) # Disabilitato di default
output = gr.JSON(visible=False) # Output dizionario
# Funzione per abilitare il bottone se sono presenti dati da caricare
def enable_submit(file, path, use_default):
return gr.update(interactive=bool(file or path or use_default))
# Abilita il bottone quando i campi di input sono valorizzati
file_input.change(fn=enable_submit, inputs=[file_input, path_input, default_checkbox], outputs=[submit_button])
path_input.change(fn=enable_submit, inputs=[file_input, path_input, default_checkbox], outputs=[submit_button])
default_checkbox.change(fn=enable_submit, inputs=[file_input, path_input, default_checkbox], outputs=[submit_button])
# Mostra l'anteprima del DataFrame di default quando il checkbox è selezionato
default_checkbox.change(fn=preview_default, inputs=[default_checkbox], outputs=[preview_output])
preview_output.change(fn=update_df, inputs=[preview_output], outputs=[preview_output])
def handle_output(file, path, use_default):
"""Gestisce l'output quando si preme il bottone 'Carica Dati'."""
result = load_data(file, path, use_default)
if isinstance(result, dict): # Se result è un dizionario di DataFrame
if len(result) == 1: # Se c'è solo una tabella
return (
gr.update(visible=False), # Nasconde l'output JSON
result, # Salva lo stato dei dati
gr.update(visible=False), # Nasconde la selezione tabella
result, # Mantiene lo stato dei dati
gr.update(interactive=False), # Disabilita il pulsante di submit
gr.update(visible=True, open=True), # Passa direttamente a select_model_acc
gr.update(visible=True, open=False)
)
else:
return (
gr.update(visible=False),
result,
gr.update(open=True, visible=True),
result,
gr.update(interactive=False),
gr.update(visible=False), # Mantiene il comportamento attuale
gr.update(visible=True, open=True)
)
else:
return (
gr.update(visible=False),
None,
gr.update(open=False, visible=True),
None,
gr.update(interactive=True),
gr.update(visible=False),
gr.update(visible=True, open=True)
)
submit_button.click(
fn=handle_output,
inputs=[file_input, path_input, default_checkbox],
outputs=[output, output, select_table_acc, data_state, submit_button, select_model_acc, upload_acc]
)
######################################
# PARTE DI SELEZIONE DELLE TABELLE #
######################################
with select_table_acc:
table_selector = gr.CheckboxGroup(choices=[], label="Seleziona le tabelle da visualizzare", value=[])
table_outputs = [gr.DataFrame(label=f"Tabella {i+1}", interactive=True, visible=False) for i in range(5)]
selected_table_names = gr.Textbox(label="Tabelle selezionate", visible=False, interactive=False)
# Bottone di selezione modelli (inizialmente disabilitato)
open_model_selection = gr.Button("Choose your models", interactive=False)
def update_table_list(data):
"""Aggiorna dinamicamente la lista delle tabelle disponibili."""
if isinstance(data, dict) and data:
table_names = list(data.keys()) # Ritorna solo i nomi delle tabelle
return gr.update(choices=table_names, value=[]) # Reset delle selezioni
return gr.update(choices=[], value=[])
def show_selected_tables(data, selected_tables):
"""Mostra solo le tabelle selezionate dall'utente e abilita il bottone."""
updates = []
if isinstance(data, dict) and data:
available_tables = list(data.keys()) # Nomi effettivamente disponibili
selected_tables = [t for t in selected_tables if t in available_tables] # Filtra selezioni valide
tables = {name: data[name] for name in selected_tables} # Filtra i DataFrame
for i, (name, df) in enumerate(tables.items()):
updates.append(gr.update(value=df, label=f"Tabella: {name}", visible=True))
# Se ci sono meno di 5 tabelle, nascondi gli altri DataFrame
for _ in range(len(tables), 5):
updates.append(gr.update(visible=False))
else:
updates = [gr.update(value=pd.DataFrame(), visible=False) for _ in range(5)]
# Abilitare/disabilitare il bottone in base alle selezioni
button_state = bool(selected_tables) # True se almeno una tabella è selezionata, False altrimenti
updates.append(gr.update(interactive=button_state)) # Aggiorna stato bottone
return updates
def show_selected_table_names(selected_tables):
"""Mostra i nomi delle tabelle selezionate quando si preme il bottone."""
if selected_tables:
return gr.update(value=", ".join(selected_tables), visible=False)
return gr.update(value="", visible=False)
# Aggiorna automaticamente la lista delle checkbox quando `data_state` cambia
data_state.change(fn=update_table_list, inputs=[data_state], outputs=[table_selector])
# Aggiorna le tabelle visibili e lo stato del bottone in base alle selezioni dell'utente
table_selector.change(fn=show_selected_tables, inputs=[data_state, table_selector], outputs=table_outputs + [open_model_selection])
# Mostra la lista delle tabelle selezionate quando si preme "Choose your models"
open_model_selection.click(fn=show_selected_table_names, inputs=[table_selector], outputs=[selected_table_names])
open_model_selection.click(open_accordion, inputs=gr.State("model_selection"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc])
####################################
# PARTE DI SELEZIONE DEL MODELLO #
####################################
with select_model_acc:
gr.Markdown("**Model Selection**")
# Supponiamo che `us.read_models_csv` restituisca anche il percorso dell'immagine
model_list_dict = us.read_models_csv(models_path)
model_list = [model["name"] for model in model_list_dict]
model_images = [model["image_path"] for model in model_list_dict]
# Creazione dinamica di checkbox con immagini
model_checkboxes = []
for model, image_path in zip(model_list, model_images):
with gr.Row():
with gr.Column(scale=1):
gr.Image(image_path, show_label=False)
with gr.Column(scale=2):
model_checkboxes.append(gr.Checkbox(label=model, value=False))
selected_models_output = gr.JSON(visible = False)
# Funzione per ottenere i modelli selezionati
def get_selected_models(*model_selections):
selected_models = [model for model, selected in zip(model_list, model_selections) if selected]
input_data['models'] = selected_models
button_state = bool(selected_models) # True se almeno un modello è selezionato, False altrimenti
return selected_models, gr.update(open=True, visible=True), gr.update(interactive=button_state)
# Bottone di submit (inizialmente disabilitato)
submit_models_button = gr.Button("Submit Models", interactive=False)
# Collegamento dei checkbox agli eventi di selezione
for checkbox in model_checkboxes:
checkbox.change(
fn=get_selected_models,
inputs=model_checkboxes,
outputs=[selected_models_output, select_model_acc, submit_models_button]
)
submit_models_button.click(
fn=lambda *args: (get_selected_models(*args), gr.update(open=False, visible=True), gr.update(open=True, visible=True)),
inputs=model_checkboxes,
outputs=[selected_models_output, select_model_acc, qatch_acc]
)
reset_data = gr.Button("Open upload data section")
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc])
###############################
# PARTE DI ESECUZIONE QATCH #
###############################
with qatch_acc:
selected_models_display = gr.JSON(label="Modelli selezionati")
submit_models_button.click(
fn=lambda: gr.update(value=input_data),
outputs=[selected_models_display]
)
proceed_to_metrics_button = gr.Button("Proceed to Metrics")
proceed_to_metrics_button.click(
fn=lambda: (gr.update(open=False, visible=True), gr.update(open=True, visible=True)),
outputs=[qatch_acc, metrics_acc]
)
reset_data = gr.Button("Open upload data section")
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc])
#######################################
# PARTE DI VISUALIZZAZIONE METRICHE #
#######################################
with metrics_acc:
confirmation_text = gr.Markdown("## Metrics successfully loaded")
data_path = 'metrics_random2.csv'
def load_data_csv_es():
return pd.read_csv(data_path)
def calculate_average_metrics(df, selected_metrics):
df['avg_metric'] = df[selected_metrics].mean(axis=1)
return df
def plot_metric(df, selected_metrics, group_by, selected_models):
df = df[df['model'].isin(selected_models)]
df = calculate_average_metrics(df, selected_metrics)
avg_metrics = df.groupby(group_by)['avg_metric'].mean().reset_index()
fig = px.bar(
avg_metrics, x=group_by[0], y='avg_metric', color=group_by[-1], barmode='group',
title=f'Media metrica per {group_by[0]}',
labels={group_by[0]: group_by[0].capitalize(), 'avg_metric': 'Media Metrica'},
template='plotly_dark'
)
return fig
def plot_radar(df, selected_models):
radar_data = []
for model in selected_models:
model_df = df[df['model'] == model]
valid_efficiency = model_df['valid_efficiency_score'].mean()
avg_time = model_df['time'].mean()
avg_tuple_order = model_df['tuple_order'].dropna().mean()
radar_data.append({
'model': model,
'valid_efficiency_score': valid_efficiency,
'time': avg_time,
'tuple_order': avg_tuple_order
})
radar_df = pd.DataFrame(radar_data)
categories = ['valid_efficiency_score', 'time', 'tuple_order']
# Calcola il range dinamico per il grafico
min_val = radar_df[categories].min().min()
max_val = radar_df[categories].max().max()
radar_df[categories] = (radar_df[categories] - min_val) / (max_val - min_val)
fig = go.Figure()
for _, row in radar_df.iterrows():
fig.add_trace(go.Scatterpolar(
r=[row[cat] for cat in categories],
theta=categories,
fill='toself',
name=row['model']
))
fig.update_layout(
polar=dict(radialaxis=dict(visible=True, range=[min_val, max_val])),
title='Radar Plot delle Metriche per Modello',
template='plotly_dark',
width=700, height=700
)
return fig
def plot_query_rate(df, selected_models, show_labels):
df = df[df['model'].isin(selected_models)]
fig = go.Figure()
for model in selected_models:
model_df = df[df['model'] == model].copy()
model_df['cumulative_time'] = model_df['time'].cumsum()
model_df['query_rate'] = 1 / model_df['time']
fig.add_trace(go.Scatter(
x=model_df['cumulative_time'],
y=model_df['query_rate'],
mode='lines+markers',
name=model,
line=dict(width=2)
))
if show_labels:
prev_category = None
prev_time = -float('inf')
y_positions = [1.1, 1.3]
y_idx = 0
for i, row in model_df.iterrows():
current_category = row['test_category']
if current_category != prev_category and row['cumulative_time'] - prev_time > 5:
fig.add_vline(x=row['cumulative_time'], line_width=1, line_dash="dash", line_color="gray")
fig.add_annotation(
x=row['cumulative_time'],
y=max(model_df['query_rate']) * y_positions[y_idx % 2],
text=current_category,
showarrow=False,
font=dict(size=10, color="white"),
textangle=45,
yshift=10,
bgcolor="rgba(0,0,0,0.6)"
)
prev_category = current_category
prev_time = row['cumulative_time']
y_idx += 1
fig.update_layout(
title="Rate di Generazione delle Query per Modello",
xaxis_title="Tempo Cumulativo (s)",
yaxis_title="Query al Secondo",
template='plotly_dark',
legend_title="Modelli"
)
return fig
def update_plot(selected_metrics, group_by, selected_models):
df = load_data_csv_es()
return plot_metric(df, selected_metrics, group_by, selected_models)
def update_radar(selected_models):
df = load_data_csv_es()
return plot_radar(df, selected_models)
def update_query_rate(selected_models, show_labels):
df = load_data_csv_es()
return plot_query_rate(df, selected_models, show_labels)
def plot_query_time_evolution(df, selected_models):
# Filtriamo i dati per i modelli selezionati
df = df[df['model'].isin(selected_models)]
# Ordinare per modello e tempo per tracciare l'evoluzione
df_sorted = df.sort_values(by=['model', 'time'])
fig = go.Figure()
# Aggiungiamo una traccia per ogni modello
for model in selected_models:
model_df = df_sorted[df_sorted['model'] == model]
fig.add_trace(go.Scatter(
x=model_df.index, y=model_df['time'], mode='lines+markers', name=model,
line=dict(shape='linear'),
text=model_df['model']
))
fig.update_layout(
title="Evoluzione del Tempo di Generazione per Modello",
xaxis_title="Indice della Query",
yaxis_title="Tempo (s)",
template='plotly_dark'
)
return fig
metrics = ["cell_precision", "cell_recall", "execution_accuracy", "tuple_cardinality", "tuple_constraint"]
group_options = {
"SQL Category": ["test_category", "model"],
"Tabella": ["tbl_name", "model"],
"Modello": ["model"]
}
df_initial = load_data_csv_es()
models = df_initial['model'].unique().tolist()
#with gr.Blocks(theme=gr.themes.Default(primary_hue='blue')) as demo:
gr.Markdown("""## Analisi delle prestazioni dei modelli
Seleziona una o più metriche per calcolare la media e visualizzare gli istogrammi e radar plots.
""")
# Sezione di selezione delle opzioni
with gr.Row():
metric_multiselect = gr.CheckboxGroup(choices=metrics, label="Seleziona le metriche")
model_multiselect = gr.CheckboxGroup(choices=models, label="Seleziona i modelli", value=models)
group_radio = gr.Radio(choices=list(group_options.keys()), label="Seleziona il raggruppamento", value="SQL Category")
#show_labels_checkbox = gr.Checkbox(label="Mostra etichette test category", value=True)
with gr.Row():
output_plot = gr.Plot()
# Dividi la pagina in due colonne
with gr.Row():
with gr.Column(scale=1): # Imposta la colonna a occupare metà della larghezza
radar_plot = gr.Plot(value=update_radar(models))
with gr.Column(scale=2): # Imposta la seconda colonna a occupare l'altra metà
show_labels_checkbox = gr.Checkbox(label="Mostra etichette test category", value=True)
query_rate_plot = gr.Plot(value=update_query_rate(models, True))
# Funzioni di callback per il cambiamento dei grafici
def on_change(selected_metrics, selected_group, selected_models):
return update_plot(selected_metrics, group_options[selected_group], selected_models)
def on_radar_change(selected_models):
return update_radar(selected_models)
show_labels_checkbox.change(update_query_rate, inputs=[model_multiselect, show_labels_checkbox], outputs=query_rate_plot)
metric_multiselect.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
group_radio.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
model_multiselect.change(on_change, inputs=[metric_multiselect, group_radio, model_multiselect], outputs=output_plot)
model_multiselect.change(on_radar_change, inputs=model_multiselect, outputs=radar_plot)
model_multiselect.change(update_query_rate, inputs=[model_multiselect, show_labels_checkbox], outputs=query_rate_plot)
reset_data = gr.Button("Open upload data section")
reset_data.click(open_accordion, inputs=gr.State("reset"), outputs=[upload_acc, select_table_acc, select_model_acc, qatch_acc, metrics_acc])
interface.launch()