Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,438 Bytes
91a4436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import csv
import pandas as pd
import sqlite3
import gradio as gr
import os
def carica_sqlite(file_path):
conn = sqlite3.connect(file_path)
cursor = conn.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
tabelle = cursor.fetchall()
tabelle = [tabella for tabella in tabelle if tabella[0] != 'sqlite_sequence']
dfs = {}
for tabella in tabelle:
nome_tabella = tabella[0]
df = pd.read_sql_query(f"SELECT * FROM {nome_tabella}", conn)
dfs[nome_tabella] = df
conn.close()
data_output = {'data_frames': dfs,'db': conn}
return data_output
# Funzione per leggere un file CSV
def carica_csv(file):
df = pd.read_csv(file)
return df
# Funzione per leggere un file Excel
def carica_excel(file):
xls = pd.ExcelFile(file)
dfs = {}
for sheet_name in xls.sheet_names:
dfs[sheet_name] = xls.parse(sheet_name)
return dfs
def load_data(data_path : str, db_name : str):
data_output = {'data_frames': {} ,'db': None}
table_name = os.path.splitext(os.path.basename(data_path))[0]
if data_path.endswith(".sqlite") :
data_output = carica_sqlite(data_path)
elif data_path.endswith(".csv"):
data_output['data_frames'] = {f"{table_name}_table" : carica_csv(data_path)}
elif data_path.endswith(".xlsx"):
data_output['data_frames'] = carica_excel(data_path)
else:
raise gr.Error("Formato file non supportato. Carica un file SQLite, CSV o Excel.")
return data_output
def read_api(api_key_path):
with open(api_key_path, "r", encoding="utf-8") as file:
api_key = file.read()
return api_key
def read_models_csv(file_path):
# Reads a CSV file and returns a list of dictionaries
models = [] # Change {} to []
with open(file_path, mode="r", newline="") as file:
reader = csv.DictReader(file)
for row in reader:
row["price"] = float(row["price"]) # Convert price to float
models.append(row) # Append to the list
return models
def csv_to_dict(file_path):
with open(file_path, mode='r', encoding='utf-8') as file:
reader = csv.DictReader(file)
data = []
for row in reader:
if "price" in row:
row["price"] = float(row["price"])
data.append(row)
return data |