Spaces:
Running
on
L4
Running
on
L4
Update app.py
Browse files
app.py
CHANGED
|
@@ -73,12 +73,15 @@ def predict(jobname, inputs, recycling_steps, sampling_steps, diffusion_samples)
|
|
| 73 |
representations.append({"model":0, "chain":chain["chain"], "style":"cartoon"})
|
| 74 |
if entity_type == "ligand":
|
| 75 |
if "sdf" in chain.keys():
|
| 76 |
-
if chain["sdf"]!="":
|
| 77 |
-
raise gr.Error("Sorry no SDF support yet")
|
| 78 |
-
if "name" in chain.keys():
|
| 79 |
sequence_data[entity_type]["ccd"] = chain["name"]
|
| 80 |
elif "smiles" in chain.keys():
|
| 81 |
sequence_data[entity_type]["smiles"] = chain["smiles"]
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
representations.append({"model":0, "chain":chain["chain"], "style":"stick", "color":"greenCarbon"})
|
| 84 |
|
|
@@ -130,7 +133,8 @@ with gr.Blocks() as blocks:
|
|
| 130 |
|
| 131 |
gr.Examples([
|
| 132 |
["TOP7",{"chains": [{"class": "protein","sequence": "MGDIQVQVNIDDNGKNFDYTYTVTTESELQKVLNELMDYIKKQGAKRVRISITARTKKEAEKFAAILIKVFAELGYNDINVTFDGDTVTVEGQLEGGSLEHHHHHH","chain": "A"}], "covMods":[]}],
|
| 133 |
-
["
|
|
|
|
| 134 |
],
|
| 135 |
inputs = [jobname, inp]
|
| 136 |
)
|
|
|
|
| 73 |
representations.append({"model":0, "chain":chain["chain"], "style":"cartoon"})
|
| 74 |
if entity_type == "ligand":
|
| 75 |
if "sdf" in chain.keys():
|
| 76 |
+
if chain["sdf"]!="" and chain["name"]=="":
|
| 77 |
+
raise gr.Error("Sorry, no SDF support yet.")
|
| 78 |
+
if "name" in chain.keys() and len(chain["name"])==3:
|
| 79 |
sequence_data[entity_type]["ccd"] = chain["name"]
|
| 80 |
elif "smiles" in chain.keys():
|
| 81 |
sequence_data[entity_type]["smiles"] = chain["smiles"]
|
| 82 |
+
else:
|
| 83 |
+
raise gr.Error("No ligand found, or not in the right format. CCD codes have 3 letters")
|
| 84 |
+
|
| 85 |
|
| 86 |
representations.append({"model":0, "chain":chain["chain"], "style":"stick", "color":"greenCarbon"})
|
| 87 |
|
|
|
|
| 133 |
|
| 134 |
gr.Examples([
|
| 135 |
["TOP7",{"chains": [{"class": "protein","sequence": "MGDIQVQVNIDDNGKNFDYTYTVTTESELQKVLNELMDYIKKQGAKRVRISITARTKKEAEKFAAILIKVFAELGYNDINVTFDGDTVTVEGQLEGGSLEHHHHHH","chain": "A"}], "covMods":[]}],
|
| 136 |
+
["ApixacabanBinderSmiles", {"chains": [{"class": "protein", "msa":True,"sequence": "SVKSEYAEAAAVGQEAVAVFNTMKAAFQNGDKEAVAQYLARLASLYTRHEELLNRILEKARREGNKEAVTLMNEFTATFQTGKSIFNAMVAAFKNGDDDSFESYLQALEKVTAKGETLADQIAKAL","chain": "A"}, {"class":"ligand", "smiles":"COc1ccc(cc1)n2c3c(c(n2)C(=O)N)CCN(C3=O)c4ccc(cc4)N5CCCCC5=O", "sdf":"","name":"","chain": "B"}], "covMods":[]}]
|
| 137 |
+
["ApixacabanBinderCCD", {"chains": [{"class": "protein","msa":True,"sequence": "SVKSEYAEAAAVGQEAVAVFNTMKAAFQNGDKEAVAQYLARLASLYTRHEELLNRILEKARREGNKEAVTLMNEFTATFQTGKSIFNAMVAAFKNGDDDSFESYLQALEKVTAKGETLADQIAKAL","chain": "A"}, {"class":"ligand", "name":"GG2", "sdf":"",chain": "B"}], "covMods":[]}]
|
| 138 |
],
|
| 139 |
inputs = [jobname, inp]
|
| 140 |
)
|