import json, time, os, sys, glob import gradio as gr sys.path.append('/home/user/app/ProteinMPNN/vanilla_proteinmpnn') import matplotlib.pyplot as plt import shutil import warnings import numpy as np import torch from torch import optim from torch.utils.data import DataLoader from torch.utils.data.dataset import random_split, Subset import copy import torch.nn as nn import torch.nn.functional as F import random import os.path from protein_mpnn_utils import loss_nll, loss_smoothed, gather_edges, gather_nodes, gather_nodes_t, cat_neighbors_nodes, _scores, _S_to_seq, tied_featurize, parse_PDB from protein_mpnn_utils import StructureDataset, StructureDatasetPDB, ProteinMPNN import plotly.express as px import urllib device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu") model_name="v_48_020" # ProteinMPNN model name: v_48_002, v_48_010, v_48_020, v_48_030, v_32_002, v_32_010; v_32_020, v_32_030; v_48_010=version with 48 edges 0.10A noise backbone_noise=0.00 # Standard deviation of Gaussian noise to add to backbone atoms path_to_model_weights='/home/user/app/ProteinMPNN/vanilla_proteinmpnn/vanilla_model_weights' hidden_dim = 128 num_layers = 3 model_folder_path = path_to_model_weights if model_folder_path[-1] != '/': model_folder_path = model_folder_path + '/' checkpoint_path = model_folder_path + f'{model_name}.pt' checkpoint = torch.load(checkpoint_path, map_location=device) noise_level_print = checkpoint['noise_level'] model = ProteinMPNN(num_letters=21, node_features=hidden_dim, edge_features=hidden_dim, hidden_dim=hidden_dim, num_encoder_layers=num_layers, num_decoder_layers=num_layers, augment_eps=backbone_noise, k_neighbors=checkpoint['num_edges']) model.to(device) model.load_state_dict(checkpoint['model_state_dict']) model.eval() import re import numpy as np def get_pdb(pdb_code="", filepath=""): if pdb_code is None or pdb_code == "": return filepath.name else: os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb") return f"{pdb_code}.pdb" def update(inp, file,designed_chain, fixed_chain, num_seqs, sampling_temp): pdb_path =get_pdb(pdb_code=inp, filepath=file) if designed_chain == "": designed_chain_list = [] else: designed_chain_list = re.sub("[^A-Za-z]+",",", designed_chain).split(",") if fixed_chain == "": fixed_chain_list = [] else: fixed_chain_list = re.sub("[^A-Za-z]+",",", fixed_chain).split(",") chain_list = list(set(designed_chain_list + fixed_chain_list)) num_seq_per_target = num_seqs save_score=0 # 0 for False, 1 for True; save score=-log_prob to npy files save_probs=0 # 0 for False, 1 for True; save MPNN predicted probabilites per position score_only=0 # 0 for False, 1 for True; score input backbone-sequence pairs conditional_probs_only=0 # 0 for False, 1 for True; output conditional probabilities p(s_i given the rest of the sequence and backbone) conditional_probs_only_backbone=0 # 0 for False, 1 for True; if true output conditional probabilities p(s_i given backbone) batch_size=1 # Batch size; can set higher for titan, quadro GPUs, reduce this if running out of GPU memory max_length=20000 # Max sequence length out_folder='.' # Path to a folder to output sequences, e.g. /home/out/ jsonl_path='' # Path to a folder with parsed pdb into jsonl omit_AAs='X' # Specify which amino acids should be omitted in the generated sequence, e.g. 'AC' would omit alanine and cystine. pssm_multi=0.0 # A value between [0.0, 1.0], 0.0 means do not use pssm, 1.0 ignore MPNN predictions pssm_threshold=0.0 # A value between -inf + inf to restric per position AAs pssm_log_odds_flag=0 # 0 for False, 1 for True pssm_bias_flag=0 # 0 for False, 1 for True folder_for_outputs = out_folder NUM_BATCHES = num_seq_per_target//batch_size BATCH_COPIES = batch_size temperatures = [sampling_temp] omit_AAs_list = omit_AAs alphabet = 'ACDEFGHIKLMNPQRSTVWYX' omit_AAs_np = np.array([AA in omit_AAs_list for AA in alphabet]).astype(np.float32) chain_id_dict = None fixed_positions_dict = None pssm_dict = None omit_AA_dict = None bias_AA_dict = None tied_positions_dict = None bias_by_res_dict = None bias_AAs_np = np.zeros(len(alphabet)) ############################################################### pdb_dict_list = parse_PDB(pdb_path, input_chain_list=chain_list) dataset_valid = StructureDatasetPDB(pdb_dict_list, truncate=None, max_length=max_length) chain_id_dict = {} chain_id_dict[pdb_dict_list[0]['name']]= (designed_chain_list, fixed_chain_list) with torch.no_grad(): for ix, protein in enumerate(dataset_valid): score_list = [] all_probs_list = [] all_log_probs_list = [] S_sample_list = [] batch_clones = [copy.deepcopy(protein) for i in range(BATCH_COPIES)] X, S, mask, lengths, chain_M, chain_encoding_all, chain_list_list, visible_list_list, masked_list_list, masked_chain_length_list_list, chain_M_pos, omit_AA_mask, residue_idx, dihedral_mask, tied_pos_list_of_lists_list, pssm_coef, pssm_bias, pssm_log_odds_all, bias_by_res_all, tied_beta = tied_featurize(batch_clones, device, chain_id_dict, fixed_positions_dict, omit_AA_dict, tied_positions_dict, pssm_dict, bias_by_res_dict) pssm_log_odds_mask = (pssm_log_odds_all > pssm_threshold).float() #1.0 for true, 0.0 for false name_ = batch_clones[0]['name'] randn_1 = torch.randn(chain_M.shape, device=X.device) log_probs = model(X, S, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_1) mask_for_loss = mask*chain_M*chain_M_pos scores = _scores(S, log_probs, mask_for_loss) native_score = scores.cpu().data.numpy() message="" for temp in temperatures: for j in range(NUM_BATCHES): randn_2 = torch.randn(chain_M.shape, device=X.device) if tied_positions_dict == None: sample_dict = model.sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=pssm_multi, pssm_log_odds_flag=bool(pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(pssm_bias_flag), bias_by_res=bias_by_res_all) S_sample = sample_dict["S"] else: sample_dict = model.tied_sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=pssm_multi, pssm_log_odds_flag=bool(pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(pssm_bias_flag), tied_pos=tied_pos_list_of_lists_list[0], tied_beta=tied_beta, bias_by_res=bias_by_res_all) # Compute scores S_sample = sample_dict["S"] log_probs = model(X, S_sample, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_2, use_input_decoding_order=True, decoding_order=sample_dict["decoding_order"]) mask_for_loss = mask*chain_M*chain_M_pos scores = _scores(S_sample, log_probs, mask_for_loss) scores = scores.cpu().data.numpy() all_probs_list.append(sample_dict["probs"].cpu().data.numpy()) all_log_probs_list.append(log_probs.cpu().data.numpy()) S_sample_list.append(S_sample.cpu().data.numpy()) for b_ix in range(BATCH_COPIES): masked_chain_length_list = masked_chain_length_list_list[b_ix] masked_list = masked_list_list[b_ix] seq_recovery_rate = torch.sum(torch.sum(torch.nn.functional.one_hot(S[b_ix], 21)*torch.nn.functional.one_hot(S_sample[b_ix], 21),axis=-1)*mask_for_loss[b_ix])/torch.sum(mask_for_loss[b_ix]) seq = _S_to_seq(S_sample[b_ix], chain_M[b_ix]) score = scores[b_ix] score_list.append(score) native_seq = _S_to_seq(S[b_ix], chain_M[b_ix]) if b_ix == 0 and j==0 and temp==temperatures[0]: start = 0 end = 0 list_of_AAs = [] for mask_l in masked_chain_length_list: end += mask_l list_of_AAs.append(native_seq[start:end]) start = end native_seq = "".join(list(np.array(list_of_AAs)[np.argsort(masked_list)])) l0 = 0 for mc_length in list(np.array(masked_chain_length_list)[np.argsort(masked_list)])[:-1]: l0 += mc_length native_seq = native_seq[:l0] + '/' + native_seq[l0:] l0 += 1 sorted_masked_chain_letters = np.argsort(masked_list_list[0]) print_masked_chains = [masked_list_list[0][i] for i in sorted_masked_chain_letters] sorted_visible_chain_letters = np.argsort(visible_list_list[0]) print_visible_chains = [visible_list_list[0][i] for i in sorted_visible_chain_letters] native_score_print = np.format_float_positional(np.float32(native_score.mean()), unique=False, precision=4) line = '>{}, score={}, fixed_chains={}, designed_chains={}, model_name={}\n{}\n'.format(name_, native_score_print, print_visible_chains, print_masked_chains, model_name, native_seq) message+=f"{line}\n" start = 0 end = 0 list_of_AAs = [] for mask_l in masked_chain_length_list: end += mask_l list_of_AAs.append(seq[start:end]) start = end seq = "".join(list(np.array(list_of_AAs)[np.argsort(masked_list)])) l0 = 0 for mc_length in list(np.array(masked_chain_length_list)[np.argsort(masked_list)])[:-1]: l0 += mc_length seq = seq[:l0] + '/' + seq[l0:] l0 += 1 score_print = np.format_float_positional(np.float32(score), unique=False, precision=4) seq_rec_print = np.format_float_positional(np.float32(seq_recovery_rate.detach().cpu().numpy()), unique=False, precision=4) line = '>T={}, sample={}, score={}, seq_recovery={}\n{}\n'.format(temp,b_ix,score_print,seq_rec_print,seq) message+=f"{line}\n" all_probs_concat = np.concatenate(all_probs_list) all_log_probs_concat = np.concatenate(all_log_probs_list) S_sample_concat = np.concatenate(S_sample_list) fig = px.imshow(all_probs_concat.mean(0).T, labels=dict(x="positions", y="amino acids", color="probability"), y=list(alphabet), template="simple_white" ) fig.update_xaxes(side="top") return message, fig proteinMPNN = gr.Blocks() with proteinMPNN: gr.Markdown("# ProteinMPNN") with gr.Tabs(): with gr.TabItem("Input"): inp = gr.Textbox( placeholder="PDB Code or upload file below", label="Input structure" ) file = gr.File(file_count="single", type="file") with gr.TabItem("Settings"): with gr.Row(): designed_chain = gr.Textbox(value="A", label="Designed chain") fixed_chain = gr.Textbox(placeholder="Use commas to fix multiple chains", label="Fixed chain") with gr.Row(): num_seqs = gr.Slider(minimum=1,maximum=50, value=1,step=1, label="Number of sequences") sampling_temp = gr.Radio(choices=[0.1, 0.15, 0.2, 0.25, 0.3], value=0.1, label="Sampling temperature") btn = gr.Button("Run") gr.Markdown( """ Sampling temperature for amino acids, `T=0.0` means taking argmax, `T>>1.0` means sample randomly. Suggested values `0.1, 0.15, 0.2, 0.25, 0.3`. Higher values will lead to more diversity. """ ) gr.Markdown("# Output") out = gr.Textbox(label="status") plot = gr.Plot() btn.click(fn=update, inputs=[inp, file, designed_chain, fixed_chain, num_seqs, sampling_temp], outputs=[out, plot]) proteinMPNN.launch(share=True)