Spaces:
Sleeping
Sleeping
File size: 21,428 Bytes
85bd48b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Data for AlphaFold."""
from alphafold.common import residue_constants
from alphafold.model.tf import shape_helpers
from alphafold.model.tf import shape_placeholders
from alphafold.model.tf import utils
import numpy as np
import tensorflow.compat.v1 as tf
# Pylint gets confused by the curry1 decorator because it changes the number
# of arguments to the function.
# pylint:disable=no-value-for-parameter
NUM_RES = shape_placeholders.NUM_RES
NUM_MSA_SEQ = shape_placeholders.NUM_MSA_SEQ
NUM_EXTRA_SEQ = shape_placeholders.NUM_EXTRA_SEQ
NUM_TEMPLATES = shape_placeholders.NUM_TEMPLATES
def cast_64bit_ints(protein):
for k, v in protein.items():
if v.dtype == tf.int64:
protein[k] = tf.cast(v, tf.int32)
return protein
_MSA_FEATURE_NAMES = [
'msa', 'deletion_matrix', 'msa_mask', 'msa_row_mask', 'bert_mask',
'true_msa'
]
def make_seq_mask(protein):
protein['seq_mask'] = tf.ones(
shape_helpers.shape_list(protein['aatype']), dtype=tf.float32)
return protein
def make_template_mask(protein):
protein['template_mask'] = tf.ones(
shape_helpers.shape_list(protein['template_domain_names']),
dtype=tf.float32)
return protein
def curry1(f):
"""Supply all arguments but the first."""
def fc(*args, **kwargs):
return lambda x: f(x, *args, **kwargs)
return fc
@curry1
def add_distillation_flag(protein, distillation):
protein['is_distillation'] = tf.constant(float(distillation),
shape=[],
dtype=tf.float32)
return protein
def make_all_atom_aatype(protein):
protein['all_atom_aatype'] = protein['aatype']
return protein
def fix_templates_aatype(protein):
"""Fixes aatype encoding of templates."""
# Map one-hot to indices.
protein['template_aatype'] = tf.argmax(
protein['template_aatype'], output_type=tf.int32, axis=-1)
# Map hhsearch-aatype to our aatype.
new_order_list = residue_constants.MAP_HHBLITS_AATYPE_TO_OUR_AATYPE
new_order = tf.constant(new_order_list, dtype=tf.int32)
protein['template_aatype'] = tf.gather(params=new_order,
indices=protein['template_aatype'])
return protein
def correct_msa_restypes(protein):
"""Correct MSA restype to have the same order as residue_constants."""
new_order_list = residue_constants.MAP_HHBLITS_AATYPE_TO_OUR_AATYPE
new_order = tf.constant(new_order_list, dtype=protein['msa'].dtype)
protein['msa'] = tf.gather(new_order, protein['msa'], axis=0)
perm_matrix = np.zeros((22, 22), dtype=np.float32)
perm_matrix[range(len(new_order_list)), new_order_list] = 1.
for k in protein:
if 'profile' in k: # Include both hhblits and psiblast profiles
num_dim = protein[k].shape.as_list()[-1]
assert num_dim in [20, 21, 22], (
'num_dim for %s out of expected range: %s' % (k, num_dim))
protein[k] = tf.tensordot(protein[k], perm_matrix[:num_dim, :num_dim], 1)
return protein
def squeeze_features(protein):
"""Remove singleton and repeated dimensions in protein features."""
protein['aatype'] = tf.argmax(
protein['aatype'], axis=-1, output_type=tf.int32)
for k in [
'domain_name', 'msa', 'num_alignments', 'seq_length', 'sequence',
'superfamily', 'deletion_matrix', 'resolution',
'between_segment_residues', 'residue_index', 'template_all_atom_masks']:
if k in protein:
final_dim = shape_helpers.shape_list(protein[k])[-1]
if isinstance(final_dim, int) and final_dim == 1:
protein[k] = tf.squeeze(protein[k], axis=-1)
for k in ['seq_length', 'num_alignments']:
if k in protein:
protein[k] = protein[k][0] # Remove fake sequence dimension
return protein
def make_random_crop_to_size_seed(protein):
"""Random seed for cropping residues and templates."""
protein['random_crop_to_size_seed'] = utils.make_random_seed()
return protein
@curry1
def randomly_replace_msa_with_unknown(protein, replace_proportion):
"""Replace a proportion of the MSA with 'X'."""
msa_mask = (tf.random.uniform(shape_helpers.shape_list(protein['msa'])) <
replace_proportion)
x_idx = 20
gap_idx = 21
msa_mask = tf.logical_and(msa_mask, protein['msa'] != gap_idx)
protein['msa'] = tf.where(msa_mask,
tf.ones_like(protein['msa']) * x_idx,
protein['msa'])
aatype_mask = (
tf.random.uniform(shape_helpers.shape_list(protein['aatype'])) <
replace_proportion)
protein['aatype'] = tf.where(aatype_mask,
tf.ones_like(protein['aatype']) * x_idx,
protein['aatype'])
return protein
@curry1
def sample_msa(protein, max_seq, keep_extra):
"""Sample MSA randomly, remaining sequences are stored as `extra_*`.
Args:
protein: batch to sample msa from.
max_seq: number of sequences to sample.
keep_extra: When True sequences not sampled are put into fields starting
with 'extra_*'.
Returns:
Protein with sampled msa.
"""
num_seq = tf.shape(protein['msa'])[0]
shuffled = tf.random_shuffle(tf.range(1, num_seq))
index_order = tf.concat([[0], shuffled], axis=0)
num_sel = tf.minimum(max_seq, num_seq)
sel_seq, not_sel_seq = tf.split(index_order, [num_sel, num_seq - num_sel])
for k in _MSA_FEATURE_NAMES:
if k in protein:
if keep_extra:
protein['extra_' + k] = tf.gather(protein[k], not_sel_seq)
protein[k] = tf.gather(protein[k], sel_seq)
return protein
@curry1
def crop_extra_msa(protein, max_extra_msa):
"""MSA features are cropped so only `max_extra_msa` sequences are kept."""
num_seq = tf.shape(protein['extra_msa'])[0]
num_sel = tf.minimum(max_extra_msa, num_seq)
select_indices = tf.random_shuffle(tf.range(0, num_seq))[:num_sel]
for k in _MSA_FEATURE_NAMES:
if 'extra_' + k in protein:
protein['extra_' + k] = tf.gather(protein['extra_' + k], select_indices)
return protein
def delete_extra_msa(protein):
for k in _MSA_FEATURE_NAMES:
if 'extra_' + k in protein:
del protein['extra_' + k]
return protein
@curry1
def block_delete_msa(protein, config):
"""Sample MSA by deleting contiguous blocks.
Jumper et al. (2021) Suppl. Alg. 1 "MSABlockDeletion"
Arguments:
protein: batch dict containing the msa
config: ConfigDict with parameters
Returns:
updated protein
"""
num_seq = shape_helpers.shape_list(protein['msa'])[0]
block_num_seq = tf.cast(
tf.floor(tf.cast(num_seq, tf.float32) * config.msa_fraction_per_block),
tf.int32)
if config.randomize_num_blocks:
nb = tf.random.uniform([], 0, config.num_blocks + 1, dtype=tf.int32)
else:
nb = config.num_blocks
del_block_starts = tf.random.uniform([nb], 0, num_seq, dtype=tf.int32)
del_blocks = del_block_starts[:, None] + tf.range(block_num_seq)
del_blocks = tf.clip_by_value(del_blocks, 0, num_seq - 1)
del_indices = tf.unique(tf.sort(tf.reshape(del_blocks, [-1])))[0]
# Make sure we keep the original sequence
sparse_diff = tf.sets.difference(tf.range(1, num_seq)[None],
del_indices[None])
keep_indices = tf.squeeze(tf.sparse.to_dense(sparse_diff), 0)
keep_indices = tf.concat([[0], keep_indices], axis=0)
for k in _MSA_FEATURE_NAMES:
if k in protein:
protein[k] = tf.gather(protein[k], keep_indices)
return protein
@curry1
def nearest_neighbor_clusters(protein, gap_agreement_weight=0.):
"""Assign each extra MSA sequence to its nearest neighbor in sampled MSA."""
# Determine how much weight we assign to each agreement. In theory, we could
# use a full blosum matrix here, but right now let's just down-weight gap
# agreement because it could be spurious.
# Never put weight on agreeing on BERT mask
weights = tf.concat([
tf.ones(21),
gap_agreement_weight * tf.ones(1),
np.zeros(1)], 0)
# Make agreement score as weighted Hamming distance
sample_one_hot = (protein['msa_mask'][:, :, None] *
tf.one_hot(protein['msa'], 23))
extra_one_hot = (protein['extra_msa_mask'][:, :, None] *
tf.one_hot(protein['extra_msa'], 23))
num_seq, num_res, _ = shape_helpers.shape_list(sample_one_hot)
extra_num_seq, _, _ = shape_helpers.shape_list(extra_one_hot)
# Compute tf.einsum('mrc,nrc,c->mn', sample_one_hot, extra_one_hot, weights)
# in an optimized fashion to avoid possible memory or computation blowup.
agreement = tf.matmul(
tf.reshape(extra_one_hot, [extra_num_seq, num_res * 23]),
tf.reshape(sample_one_hot * weights, [num_seq, num_res * 23]),
transpose_b=True)
# Assign each sequence in the extra sequences to the closest MSA sample
protein['extra_cluster_assignment'] = tf.argmax(
agreement, axis=1, output_type=tf.int32)
return protein
@curry1
def summarize_clusters(protein):
"""Produce profile and deletion_matrix_mean within each cluster."""
num_seq = shape_helpers.shape_list(protein['msa'])[0]
def csum(x):
return tf.math.unsorted_segment_sum(
x, protein['extra_cluster_assignment'], num_seq)
mask = protein['extra_msa_mask']
mask_counts = 1e-6 + protein['msa_mask'] + csum(mask) # Include center
msa_sum = csum(mask[:, :, None] * tf.one_hot(protein['extra_msa'], 23))
msa_sum += tf.one_hot(protein['msa'], 23) # Original sequence
protein['cluster_profile'] = msa_sum / mask_counts[:, :, None]
del msa_sum
del_sum = csum(mask * protein['extra_deletion_matrix'])
del_sum += protein['deletion_matrix'] # Original sequence
protein['cluster_deletion_mean'] = del_sum / mask_counts
del del_sum
return protein
def make_msa_mask(protein):
"""Mask features are all ones, but will later be zero-padded."""
protein['msa_mask'] = tf.ones(
shape_helpers.shape_list(protein['msa']), dtype=tf.float32)
protein['msa_row_mask'] = tf.ones(
shape_helpers.shape_list(protein['msa'])[0], dtype=tf.float32)
return protein
def pseudo_beta_fn(aatype, all_atom_positions, all_atom_masks):
"""Create pseudo beta features."""
is_gly = tf.equal(aatype, residue_constants.restype_order['G'])
ca_idx = residue_constants.atom_order['CA']
cb_idx = residue_constants.atom_order['CB']
pseudo_beta = tf.where(
tf.tile(is_gly[..., None], [1] * len(is_gly.shape) + [3]),
all_atom_positions[..., ca_idx, :],
all_atom_positions[..., cb_idx, :])
if all_atom_masks is not None:
pseudo_beta_mask = tf.where(
is_gly, all_atom_masks[..., ca_idx], all_atom_masks[..., cb_idx])
pseudo_beta_mask = tf.cast(pseudo_beta_mask, tf.float32)
return pseudo_beta, pseudo_beta_mask
else:
return pseudo_beta
@curry1
def make_pseudo_beta(protein, prefix=''):
"""Create pseudo-beta (alpha for glycine) position and mask."""
assert prefix in ['', 'template_']
protein[prefix + 'pseudo_beta'], protein[prefix + 'pseudo_beta_mask'] = (
pseudo_beta_fn(
protein['template_aatype' if prefix else 'all_atom_aatype'],
protein[prefix + 'all_atom_positions'],
protein['template_all_atom_masks' if prefix else 'all_atom_mask']))
return protein
@curry1
def add_constant_field(protein, key, value):
protein[key] = tf.convert_to_tensor(value)
return protein
def shaped_categorical(probs, epsilon=1e-10):
ds = shape_helpers.shape_list(probs)
num_classes = ds[-1]
counts = tf.random.categorical(
tf.reshape(tf.log(probs + epsilon), [-1, num_classes]),
1,
dtype=tf.int32)
return tf.reshape(counts, ds[:-1])
def make_hhblits_profile(protein):
"""Compute the HHblits MSA profile if not already present."""
if 'hhblits_profile' in protein:
return protein
# Compute the profile for every residue (over all MSA sequences).
protein['hhblits_profile'] = tf.reduce_mean(
tf.one_hot(protein['msa'], 22), axis=0)
return protein
@curry1
def make_masked_msa(protein, config, replace_fraction):
"""Create data for BERT on raw MSA."""
# Add a random amino acid uniformly
random_aa = tf.constant([0.05] * 20 + [0., 0.], dtype=tf.float32)
categorical_probs = (
config.uniform_prob * random_aa +
config.profile_prob * protein['hhblits_profile'] +
config.same_prob * tf.one_hot(protein['msa'], 22))
# Put all remaining probability on [MASK] which is a new column
pad_shapes = [[0, 0] for _ in range(len(categorical_probs.shape))]
pad_shapes[-1][1] = 1
mask_prob = 1. - config.profile_prob - config.same_prob - config.uniform_prob
assert mask_prob >= 0.
categorical_probs = tf.pad(
categorical_probs, pad_shapes, constant_values=mask_prob)
sh = shape_helpers.shape_list(protein['msa'])
mask_position = tf.random.uniform(sh) < replace_fraction
bert_msa = shaped_categorical(categorical_probs)
bert_msa = tf.where(mask_position, bert_msa, protein['msa'])
# Mix real and masked MSA
protein['bert_mask'] = tf.cast(mask_position, tf.float32)
protein['true_msa'] = protein['msa']
protein['msa'] = bert_msa
return protein
@curry1
def make_fixed_size(protein, shape_schema, msa_cluster_size, extra_msa_size,
num_res, num_templates=0):
"""Guess at the MSA and sequence dimensions to make fixed size."""
pad_size_map = {
NUM_RES: num_res,
NUM_MSA_SEQ: msa_cluster_size,
NUM_EXTRA_SEQ: extra_msa_size,
NUM_TEMPLATES: num_templates,
}
for k, v in protein.items():
# Don't transfer this to the accelerator.
if k == 'extra_cluster_assignment':
continue
shape = v.shape.as_list()
schema = shape_schema[k]
assert len(shape) == len(schema), (
f'Rank mismatch between shape and shape schema for {k}: '
f'{shape} vs {schema}')
pad_size = [
pad_size_map.get(s2, None) or s1 for (s1, s2) in zip(shape, schema)
]
padding = [(0, p - tf.shape(v)[i]) for i, p in enumerate(pad_size)]
if padding:
protein[k] = tf.pad(
v, padding, name=f'pad_to_fixed_{k}')
protein[k].set_shape(pad_size)
return protein
@curry1
def make_msa_feat(protein):
"""Create and concatenate MSA features."""
# Whether there is a domain break. Always zero for chains, but keeping
# for compatibility with domain datasets.
has_break = tf.clip_by_value(
tf.cast(protein['between_segment_residues'], tf.float32),
0, 1)
aatype_1hot = tf.one_hot(protein['aatype'], 21, axis=-1)
target_feat = [
tf.expand_dims(has_break, axis=-1),
aatype_1hot, # Everyone gets the original sequence.
]
msa_1hot = tf.one_hot(protein['msa'], 23, axis=-1)
has_deletion = tf.clip_by_value(protein['deletion_matrix'], 0., 1.)
deletion_value = tf.atan(protein['deletion_matrix'] / 3.) * (2. / np.pi)
msa_feat = [
msa_1hot,
tf.expand_dims(has_deletion, axis=-1),
tf.expand_dims(deletion_value, axis=-1),
]
if 'cluster_profile' in protein:
deletion_mean_value = (
tf.atan(protein['cluster_deletion_mean'] / 3.) * (2. / np.pi))
msa_feat.extend([
protein['cluster_profile'],
tf.expand_dims(deletion_mean_value, axis=-1),
])
if 'extra_deletion_matrix' in protein:
protein['extra_has_deletion'] = tf.clip_by_value(
protein['extra_deletion_matrix'], 0., 1.)
protein['extra_deletion_value'] = tf.atan(
protein['extra_deletion_matrix'] / 3.) * (2. / np.pi)
protein['msa_feat'] = tf.concat(msa_feat, axis=-1)
protein['target_feat'] = tf.concat(target_feat, axis=-1)
return protein
@curry1
def select_feat(protein, feature_list):
return {k: v for k, v in protein.items() if k in feature_list}
@curry1
def crop_templates(protein, max_templates):
for k, v in protein.items():
if k.startswith('template_'):
protein[k] = v[:max_templates]
return protein
@curry1
def random_crop_to_size(protein, crop_size, max_templates, shape_schema,
subsample_templates=False):
"""Crop randomly to `crop_size`, or keep as is if shorter than that."""
seq_length = protein['seq_length']
if 'template_mask' in protein:
num_templates = tf.cast(
shape_helpers.shape_list(protein['template_mask'])[0], tf.int32)
else:
num_templates = tf.constant(0, dtype=tf.int32)
num_res_crop_size = tf.math.minimum(seq_length, crop_size)
# Ensures that the cropping of residues and templates happens in the same way
# across ensembling iterations.
# Do not use for randomness that should vary in ensembling.
seed_maker = utils.SeedMaker(initial_seed=protein['random_crop_to_size_seed'])
if subsample_templates:
templates_crop_start = tf.random.stateless_uniform(
shape=(), minval=0, maxval=num_templates + 1, dtype=tf.int32,
seed=seed_maker())
else:
templates_crop_start = 0
num_templates_crop_size = tf.math.minimum(
num_templates - templates_crop_start, max_templates)
num_res_crop_start = tf.random.stateless_uniform(
shape=(), minval=0, maxval=seq_length - num_res_crop_size + 1,
dtype=tf.int32, seed=seed_maker())
templates_select_indices = tf.argsort(tf.random.stateless_uniform(
[num_templates], seed=seed_maker()))
for k, v in protein.items():
if k not in shape_schema or (
'template' not in k and NUM_RES not in shape_schema[k]):
continue
# randomly permute the templates before cropping them.
if k.startswith('template') and subsample_templates:
v = tf.gather(v, templates_select_indices)
crop_sizes = []
crop_starts = []
for i, (dim_size, dim) in enumerate(zip(shape_schema[k],
shape_helpers.shape_list(v))):
is_num_res = (dim_size == NUM_RES)
if i == 0 and k.startswith('template'):
crop_size = num_templates_crop_size
crop_start = templates_crop_start
else:
crop_start = num_res_crop_start if is_num_res else 0
crop_size = (num_res_crop_size if is_num_res else
(-1 if dim is None else dim))
crop_sizes.append(crop_size)
crop_starts.append(crop_start)
protein[k] = tf.slice(v, crop_starts, crop_sizes)
protein['seq_length'] = num_res_crop_size
return protein
def make_atom14_masks(protein):
"""Construct denser atom positions (14 dimensions instead of 37)."""
restype_atom14_to_atom37 = [] # mapping (restype, atom14) --> atom37
restype_atom37_to_atom14 = [] # mapping (restype, atom37) --> atom14
restype_atom14_mask = []
for rt in residue_constants.restypes:
atom_names = residue_constants.restype_name_to_atom14_names[
residue_constants.restype_1to3[rt]]
restype_atom14_to_atom37.append([
(residue_constants.atom_order[name] if name else 0)
for name in atom_names
])
atom_name_to_idx14 = {name: i for i, name in enumerate(atom_names)}
restype_atom37_to_atom14.append([
(atom_name_to_idx14[name] if name in atom_name_to_idx14 else 0)
for name in residue_constants.atom_types
])
restype_atom14_mask.append([(1. if name else 0.) for name in atom_names])
# Add dummy mapping for restype 'UNK'
restype_atom14_to_atom37.append([0] * 14)
restype_atom37_to_atom14.append([0] * 37)
restype_atom14_mask.append([0.] * 14)
restype_atom14_to_atom37 = np.array(restype_atom14_to_atom37, dtype=np.int32)
restype_atom37_to_atom14 = np.array(restype_atom37_to_atom14, dtype=np.int32)
restype_atom14_mask = np.array(restype_atom14_mask, dtype=np.float32)
# create the mapping for (residx, atom14) --> atom37, i.e. an array
# with shape (num_res, 14) containing the atom37 indices for this protein
residx_atom14_to_atom37 = tf.gather(restype_atom14_to_atom37,
protein['aatype'])
residx_atom14_mask = tf.gather(restype_atom14_mask,
protein['aatype'])
protein['atom14_atom_exists'] = residx_atom14_mask
protein['residx_atom14_to_atom37'] = residx_atom14_to_atom37
# create the gather indices for mapping back
residx_atom37_to_atom14 = tf.gather(restype_atom37_to_atom14,
protein['aatype'])
protein['residx_atom37_to_atom14'] = residx_atom37_to_atom14
# create the corresponding mask
restype_atom37_mask = np.zeros([21, 37], dtype=np.float32)
for restype, restype_letter in enumerate(residue_constants.restypes):
restype_name = residue_constants.restype_1to3[restype_letter]
atom_names = residue_constants.residue_atoms[restype_name]
for atom_name in atom_names:
atom_type = residue_constants.atom_order[atom_name]
restype_atom37_mask[restype, atom_type] = 1
residx_atom37_mask = tf.gather(restype_atom37_mask,
protein['aatype'])
protein['atom37_atom_exists'] = residx_atom37_mask
return protein
|