Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Auto Model class. """ | |
import logging | |
from collections import OrderedDict | |
from .configuration_auto import ( | |
AlbertConfig, | |
AutoConfig, | |
BertConfig, | |
CTRLConfig, | |
DistilBertConfig, | |
GPT2Config, | |
OpenAIGPTConfig, | |
RobertaConfig, | |
T5Config, | |
TransfoXLConfig, | |
XLMConfig, | |
XLNetConfig, | |
) | |
from .configuration_utils import PretrainedConfig | |
from .modeling_tf_albert import ( | |
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TFAlbertForMaskedLM, | |
TFAlbertForSequenceClassification, | |
TFAlbertModel, | |
) | |
from .modeling_tf_bert import ( | |
TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TFBertForMaskedLM, | |
TFBertForPreTraining, | |
TFBertForQuestionAnswering, | |
TFBertForSequenceClassification, | |
TFBertForTokenClassification, | |
TFBertModel, | |
) | |
from .modeling_tf_ctrl import TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, TFCTRLLMHeadModel, TFCTRLModel | |
from .modeling_tf_distilbert import ( | |
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TFDistilBertForMaskedLM, | |
TFDistilBertForQuestionAnswering, | |
TFDistilBertForSequenceClassification, | |
TFDistilBertForTokenClassification, | |
TFDistilBertModel, | |
) | |
from .modeling_tf_gpt2 import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, TFGPT2LMHeadModel, TFGPT2Model | |
from .modeling_tf_openai import TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, TFOpenAIGPTLMHeadModel, TFOpenAIGPTModel | |
from .modeling_tf_roberta import ( | |
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TFRobertaForMaskedLM, | |
TFRobertaForSequenceClassification, | |
TFRobertaForTokenClassification, | |
TFRobertaModel, | |
) | |
from .modeling_tf_t5 import TF_T5_PRETRAINED_MODEL_ARCHIVE_MAP, TFT5Model, TFT5WithLMHeadModel | |
from .modeling_tf_transfo_xl import ( | |
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TFTransfoXLLMHeadModel, | |
TFTransfoXLModel, | |
) | |
from .modeling_tf_xlm import ( | |
TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TFXLMForQuestionAnsweringSimple, | |
TFXLMForSequenceClassification, | |
TFXLMModel, | |
TFXLMWithLMHeadModel, | |
) | |
from .modeling_tf_xlnet import ( | |
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TFXLNetForQuestionAnsweringSimple, | |
TFXLNetForSequenceClassification, | |
TFXLNetForTokenClassification, | |
TFXLNetLMHeadModel, | |
TFXLNetModel, | |
) | |
logger = logging.getLogger(__name__) | |
TF_ALL_PRETRAINED_MODEL_ARCHIVE_MAP = dict( | |
(key, value) | |
for pretrained_map in [ | |
TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP, | |
TF_T5_PRETRAINED_MODEL_ARCHIVE_MAP, | |
] | |
for key, value, in pretrained_map.items() | |
) | |
TF_MODEL_MAPPING = OrderedDict( | |
[ | |
(T5Config, TFT5Model), | |
(DistilBertConfig, TFDistilBertModel), | |
(AlbertConfig, TFAlbertModel), | |
(RobertaConfig, TFRobertaModel), | |
(BertConfig, TFBertModel), | |
(OpenAIGPTConfig, TFOpenAIGPTModel), | |
(GPT2Config, TFGPT2Model), | |
(TransfoXLConfig, TFTransfoXLModel), | |
(XLNetConfig, TFXLNetModel), | |
(XLMConfig, TFXLMModel), | |
(CTRLConfig, TFCTRLModel), | |
] | |
) | |
TF_MODEL_FOR_PRETRAINING_MAPPING = OrderedDict( | |
[ | |
(T5Config, TFT5WithLMHeadModel), | |
(DistilBertConfig, TFDistilBertForMaskedLM), | |
(AlbertConfig, TFAlbertForMaskedLM), | |
(RobertaConfig, TFRobertaForMaskedLM), | |
(BertConfig, TFBertForPreTraining), | |
(OpenAIGPTConfig, TFOpenAIGPTLMHeadModel), | |
(GPT2Config, TFGPT2LMHeadModel), | |
(TransfoXLConfig, TFTransfoXLLMHeadModel), | |
(XLNetConfig, TFXLNetLMHeadModel), | |
(XLMConfig, TFXLMWithLMHeadModel), | |
(CTRLConfig, TFCTRLLMHeadModel), | |
] | |
) | |
TF_MODEL_WITH_LM_HEAD_MAPPING = OrderedDict( | |
[ | |
(T5Config, TFT5WithLMHeadModel), | |
(DistilBertConfig, TFDistilBertForMaskedLM), | |
(AlbertConfig, TFAlbertForMaskedLM), | |
(RobertaConfig, TFRobertaForMaskedLM), | |
(BertConfig, TFBertForMaskedLM), | |
(OpenAIGPTConfig, TFOpenAIGPTLMHeadModel), | |
(GPT2Config, TFGPT2LMHeadModel), | |
(TransfoXLConfig, TFTransfoXLLMHeadModel), | |
(XLNetConfig, TFXLNetLMHeadModel), | |
(XLMConfig, TFXLMWithLMHeadModel), | |
(CTRLConfig, TFCTRLLMHeadModel), | |
] | |
) | |
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = OrderedDict( | |
[ | |
(DistilBertConfig, TFDistilBertForSequenceClassification), | |
(AlbertConfig, TFAlbertForSequenceClassification), | |
(RobertaConfig, TFRobertaForSequenceClassification), | |
(BertConfig, TFBertForSequenceClassification), | |
(XLNetConfig, TFXLNetForSequenceClassification), | |
(XLMConfig, TFXLMForSequenceClassification), | |
] | |
) | |
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = OrderedDict( | |
[ | |
(DistilBertConfig, TFDistilBertForQuestionAnswering), | |
(BertConfig, TFBertForQuestionAnswering), | |
(XLNetConfig, TFXLNetForQuestionAnsweringSimple), | |
(XLMConfig, TFXLMForQuestionAnsweringSimple), | |
] | |
) | |
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = OrderedDict( | |
[ | |
(DistilBertConfig, TFDistilBertForTokenClassification), | |
(RobertaConfig, TFRobertaForTokenClassification), | |
(BertConfig, TFBertForTokenClassification), | |
(XLNetConfig, TFXLNetForTokenClassification), | |
] | |
) | |
class TFAutoModel(object): | |
r""" | |
:class:`~transformers.TFAutoModel` is a generic model class | |
that will be instantiated as one of the base model classes of the library | |
when created with the `TFAutoModel.from_pretrained(pretrained_model_name_or_path)` | |
class method. | |
The `from_pretrained()` method takes care of returning the correct model class instance | |
based on the `model_type` property of the config object, or when it's missing, | |
falling back to using pattern matching on the `pretrained_model_name_or_path` string. | |
The base model class to instantiate is selected as the first pattern matching | |
in the `pretrained_model_name_or_path` string (in the following order): | |
- contains `t5`: TFT5Model (T5 model) | |
- contains `distilbert`: TFDistilBertModel (DistilBERT model) | |
- contains `roberta`: TFRobertaModel (RoBERTa model) | |
- contains `bert`: TFBertModel (Bert model) | |
- contains `openai-gpt`: TFOpenAIGPTModel (OpenAI GPT model) | |
- contains `gpt2`: TFGPT2Model (OpenAI GPT-2 model) | |
- contains `transfo-xl`: TFTransfoXLModel (Transformer-XL model) | |
- contains `xlnet`: TFXLNetModel (XLNet model) | |
- contains `xlm`: TFXLMModel (XLM model) | |
- contains `ctrl`: TFCTRLModel (CTRL model) | |
This class cannot be instantiated using `__init__()` (throws an error). | |
""" | |
def __init__(self): | |
raise EnvironmentError( | |
"TFAutoModel is designed to be instantiated " | |
"using the `TFAutoModel.from_pretrained(pretrained_model_name_or_path)` or " | |
"`TFAutoModel.from_config(config)` methods." | |
) | |
def from_config(cls, config): | |
r""" Instantiates one of the base model classes of the library | |
from a configuration. | |
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: | |
The model class to instantiate is selected based on the configuration class: | |
- isInstance of `distilbert` configuration class: TFDistilBertModel (DistilBERT model) | |
- isInstance of `roberta` configuration class: TFRobertaModel (RoBERTa model) | |
- isInstance of `bert` configuration class: TFBertModel (Bert model) | |
- isInstance of `openai-gpt` configuration class: TFOpenAIGPTModel (OpenAI GPT model) | |
- isInstance of `gpt2` configuration class: TFGPT2Model (OpenAI GPT-2 model) | |
- isInstance of `ctrl` configuration class: TFCTRLModel (Salesforce CTRL model) | |
- isInstance of `transfo-xl` configuration class: TFTransfoXLModel (Transformer-XL model) | |
- isInstance of `xlnet` configuration class: TFXLNetModel (XLNet model) | |
- isInstance of `xlm` configuration class: TFXLMModel (XLM model) | |
Examples:: | |
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. | |
model = TFAutoModel.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
""" | |
for config_class, model_class in TF_MODEL_MAPPING.items(): | |
if isinstance(config, config_class): | |
return model_class(config) | |
raise ValueError( | |
"Unrecognized configuration class {} for this kind of TFAutoModel: {}.\n" | |
"Model type should be one of {}.".format( | |
config.__class__, cls.__name__, ", ".join(c.__name__ for c in TF_MODEL_MAPPING.keys()) | |
) | |
) | |
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |
r""" Instantiates one of the base model classes of the library | |
from a pre-trained model configuration. | |
The model class to instantiate is selected as the first pattern matching | |
in the `pretrained_model_name_or_path` string (in the following order): | |
- contains `t5`: TFT5Model (T5 model) | |
- contains `distilbert`: TFDistilBertModel (DistilBERT model) | |
- contains `roberta`: TFRobertaModel (RoBERTa model) | |
- contains `bert`: TFTFBertModel (Bert model) | |
- contains `openai-gpt`: TFOpenAIGPTModel (OpenAI GPT model) | |
- contains `gpt2`: TFGPT2Model (OpenAI GPT-2 model) | |
- contains `transfo-xl`: TFTransfoXLModel (Transformer-XL model) | |
- contains `xlnet`: TFXLNetModel (XLNet model) | |
- contains `ctrl`: TFCTRLModel (CTRL model) | |
Params: | |
pretrained_model_name_or_path: either: | |
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. | |
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. | |
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. | |
- a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument. | |
from_pt: (`Optional`) Boolean | |
Set to True if the Checkpoint is a PyTorch checkpoint. | |
model_args: (`optional`) Sequence of positional arguments: | |
All remaning positional arguments will be passed to the underlying model's ``__init__`` method | |
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: | |
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: | |
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or | |
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. | |
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. | |
state_dict: (`optional`) dict: | |
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. | |
This option can be used if you want to create a model from a pretrained configuration but load your own weights. | |
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. | |
cache_dir: (`optional`) string: | |
Path to a directory in which a downloaded pre-trained model | |
configuration should be cached if the standard cache should not be used. | |
force_download: (`optional`) boolean, default False: | |
Force to (re-)download the model weights and configuration files and override the cached versions if they exists. | |
resume_download: (`optional`) boolean, default False: | |
Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. | |
proxies: (`optional`) dict, default None: | |
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. | |
The proxies are used on each request. | |
output_loading_info: (`optional`) boolean: | |
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. | |
kwargs: (`optional`) Remaining dictionary of keyword arguments: | |
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: | |
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) | |
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. | |
Examples:: | |
model = TFAutoModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. | |
model = TFAutoModel.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
model = TFAutoModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading | |
assert model.config.output_attention == True | |
# Loading from a TF checkpoint file instead of a PyTorch model (slower) | |
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') | |
model = TFAutoModel.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config) | |
""" | |
config = kwargs.pop("config", None) | |
if not isinstance(config, PretrainedConfig): | |
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) | |
for config_class, model_class in TF_MODEL_MAPPING.items(): | |
if isinstance(config, config_class): | |
return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs) | |
raise ValueError( | |
"Unrecognized configuration class {} for this kind of TFAutoModel: {}.\n" | |
"Model type should be one of {}.".format( | |
config.__class__, cls.__name__, ", ".join(c.__name__ for c in TF_MODEL_MAPPING.keys()) | |
) | |
) | |
class TFAutoModelForPreTraining(object): | |
r""" | |
:class:`~transformers.TFAutoModelForPreTraining` is a generic model class | |
that will be instantiated as one of the model classes of the library -with the architecture used for pretraining this model– when created with the `TFAutoModelForPreTraining.from_pretrained(pretrained_model_name_or_path)` | |
class method. | |
This class cannot be instantiated using `__init__()` (throws an error). | |
""" | |
def __init__(self): | |
raise EnvironmentError( | |
"TFAutoModelForPreTraining is designed to be instantiated " | |
"using the `TFAutoModelForPreTraining.from_pretrained(pretrained_model_name_or_path)` or " | |
"`TFAutoModelForPreTraining.from_config(config)` methods." | |
) | |
def from_config(cls, config): | |
r""" Instantiates one of the base model classes of the library | |
from a configuration. | |
Args: | |
config (:class:`~transformers.PretrainedConfig`): | |
The model class to instantiate is selected based on the configuration class: | |
- isInstance of `distilbert` configuration class: :class:`~transformers.TFDistilBertModelForMaskedLM` (DistilBERT model) | |
- isInstance of `roberta` configuration class: :class:`~transformers.TFRobertaModelForMaskedLM` (RoBERTa model) | |
- isInstance of `bert` configuration class: :class:`~transformers.TFBertForPreTraining` (Bert model) | |
- isInstance of `openai-gpt` configuration class: :class:`~transformers.TFOpenAIGPTLMHeadModel` (OpenAI GPT model) | |
- isInstance of `gpt2` configuration class: :class:`~transformers.TFGPT2ModelLMHeadModel` (OpenAI GPT-2 model) | |
- isInstance of `ctrl` configuration class: :class:`~transformers.TFCTRLModelLMHeadModel` (Salesforce CTRL model) | |
- isInstance of `transfo-xl` configuration class: :class:`~transformers.TFTransfoXLLMHeadModel` (Transformer-XL model) | |
- isInstance of `xlnet` configuration class: :class:`~transformers.TFXLNetLMHeadModel` (XLNet model) | |
- isInstance of `xlm` configuration class: :class:`~transformers.TFXLMWithLMHeadModel` (XLM model) | |
Examples:: | |
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. | |
model = TFAutoModelForPreTraining.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
""" | |
for config_class, model_class in TF_MODEL_FOR_PRETRAINING_MAPPING.items(): | |
if isinstance(config, config_class): | |
return model_class(config) | |
raise ValueError( | |
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n" | |
"Model type should be one of {}.".format( | |
config.__class__, cls.__name__, ", ".join(c.__name__ for c in TF_MODEL_FOR_PRETRAINING_MAPPING.keys()) | |
) | |
) | |
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |
r""" Instantiates one of the model classes of the library -with the architecture used for pretraining this model– from a pre-trained model configuration. | |
The `from_pretrained()` method takes care of returning the correct model class instance | |
based on the `model_type` property of the config object, or when it's missing, | |
falling back to using pattern matching on the `pretrained_model_name_or_path` string. | |
The model class to instantiate is selected as the first pattern matching | |
in the `pretrained_model_name_or_path` string (in the following order): | |
- contains `t5`: :class:`~transformers.TFT5ModelWithLMHead` (T5 model) | |
- contains `distilbert`: :class:`~transformers.TFDistilBertForMaskedLM` (DistilBERT model) | |
- contains `albert`: :class:`~transformers.TFAlbertForMaskedLM` (ALBERT model) | |
- contains `roberta`: :class:`~transformers.TFRobertaForMaskedLM` (RoBERTa model) | |
- contains `bert`: :class:`~transformers.TFBertForPreTraining` (Bert model) | |
- contains `openai-gpt`: :class:`~transformers.TFOpenAIGPTLMHeadModel` (OpenAI GPT model) | |
- contains `gpt2`: :class:`~transformers.TFGPT2LMHeadModel` (OpenAI GPT-2 model) | |
- contains `transfo-xl`: :class:`~transformers.TFTransfoXLLMHeadModel` (Transformer-XL model) | |
- contains `xlnet`: :class:`~transformers.TFXLNetLMHeadModel` (XLNet model) | |
- contains `xlm`: :class:`~transformers.TFXLMWithLMHeadModel` (XLM model) | |
- contains `ctrl`: :class:`~transformers.TFCTRLLMHeadModel` (Salesforce CTRL model) | |
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated) | |
To train the model, you should first set it back in training mode with `model.train()` | |
Args: | |
pretrained_model_name_or_path: | |
Either: | |
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. | |
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. | |
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. | |
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. | |
model_args: (`optional`) Sequence of positional arguments: | |
All remaning positional arguments will be passed to the underlying model's ``__init__`` method | |
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: | |
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: | |
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or | |
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. | |
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. | |
state_dict: (`optional`) dict: | |
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. | |
This option can be used if you want to create a model from a pretrained configuration but load your own weights. | |
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. | |
cache_dir: (`optional`) string: | |
Path to a directory in which a downloaded pre-trained model | |
configuration should be cached if the standard cache should not be used. | |
force_download: (`optional`) boolean, default False: | |
Force to (re-)download the model weights and configuration files and override the cached versions if they exists. | |
resume_download: (`optional`) boolean, default False: | |
Do not delete incompletely received file. Attempt to resume the download if such a file exists. | |
proxies: (`optional`) dict, default None: | |
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. | |
The proxies are used on each request. | |
output_loading_info: (`optional`) boolean: | |
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. | |
kwargs: (`optional`) Remaining dictionary of keyword arguments: | |
Can be used to update the configuration object (after it being loaded) and initiate the model. | |
(e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or | |
automatically loaded: | |
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the | |
underlying model's ``__init__`` method (we assume all relevant updates to the configuration have | |
already been done) | |
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class | |
initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of | |
``kwargs`` that corresponds to a configuration attribute will be used to override said attribute | |
with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration | |
attribute will be passed to the underlying model's ``__init__`` function. | |
Examples:: | |
model = TFAutoModelForPreTraining.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. | |
model = TFAutoModelForPreTraining.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
model = TFAutoModelForPreTraining.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading | |
assert model.config.output_attention == True | |
# Loading from a TF checkpoint file instead of a PyTorch model (slower) | |
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') | |
model = TFAutoModelForPreTraining.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) | |
""" | |
config = kwargs.pop("config", None) | |
if not isinstance(config, PretrainedConfig): | |
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) | |
for config_class, model_class in TF_MODEL_FOR_PRETRAINING_MAPPING.items(): | |
if isinstance(config, config_class): | |
return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs) | |
raise ValueError( | |
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n" | |
"Model type should be one of {}.".format( | |
config.__class__, cls.__name__, ", ".join(c.__name__ for c in TF_MODEL_FOR_PRETRAINING_MAPPING.keys()) | |
) | |
) | |
class TFAutoModelWithLMHead(object): | |
r""" | |
:class:`~transformers.TFAutoModelWithLMHead` is a generic model class | |
that will be instantiated as one of the language modeling model classes of the library | |
when created with the `TFAutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` | |
class method. | |
The `from_pretrained()` method takes care of returning the correct model class instance | |
based on the `model_type` property of the config object, or when it's missing, | |
falling back to using pattern matching on the `pretrained_model_name_or_path` string. | |
The model class to instantiate is selected as the first pattern matching | |
in the `pretrained_model_name_or_path` string (in the following order): | |
- contains `t5`: TFT5WithLMHeadModel (T5 model) | |
- contains `distilbert`: TFDistilBertForMaskedLM (DistilBERT model) | |
- contains `roberta`: TFRobertaForMaskedLM (RoBERTa model) | |
- contains `bert`: TFBertForMaskedLM (Bert model) | |
- contains `openai-gpt`: TFOpenAIGPTLMHeadModel (OpenAI GPT model) | |
- contains `gpt2`: TFGPT2LMHeadModel (OpenAI GPT-2 model) | |
- contains `transfo-xl`: TFTransfoXLLMHeadModel (Transformer-XL model) | |
- contains `xlnet`: TFXLNetLMHeadModel (XLNet model) | |
- contains `xlm`: TFXLMWithLMHeadModel (XLM model) | |
- contains `ctrl`: TFCTRLLMHeadModel (CTRL model) | |
This class cannot be instantiated using `__init__()` (throws an error). | |
""" | |
def __init__(self): | |
raise EnvironmentError( | |
"TFAutoModelWithLMHead is designed to be instantiated " | |
"using the `TFAutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` or " | |
"`TFAutoModelWithLMHead.from_config(config)` methods." | |
) | |
def from_config(cls, config): | |
r""" Instantiates one of the base model classes of the library | |
from a configuration. | |
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: | |
The model class to instantiate is selected based on the configuration class: | |
- isInstance of `distilbert` configuration class: DistilBertModel (DistilBERT model) | |
- isInstance of `roberta` configuration class: RobertaModel (RoBERTa model) | |
- isInstance of `bert` configuration class: BertModel (Bert model) | |
- isInstance of `openai-gpt` configuration class: OpenAIGPTModel (OpenAI GPT model) | |
- isInstance of `gpt2` configuration class: GPT2Model (OpenAI GPT-2 model) | |
- isInstance of `ctrl` configuration class: CTRLModel (Salesforce CTRL model) | |
- isInstance of `transfo-xl` configuration class: TransfoXLModel (Transformer-XL model) | |
- isInstance of `xlnet` configuration class: XLNetModel (XLNet model) | |
- isInstance of `xlm` configuration class: XLMModel (XLM model) | |
Examples:: | |
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. | |
model = TFAutoModelWithLMHead.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
""" | |
for config_class, model_class in TF_MODEL_WITH_LM_HEAD_MAPPING.items(): | |
if isinstance(config, config_class): | |
return model_class(config) | |
raise ValueError( | |
"Unrecognized configuration class {} for this kind of TFAutoModel: {}.\n" | |
"Model type should be one of {}.".format( | |
config.__class__, cls.__name__, ", ".join(c.__name__ for c in TF_MODEL_WITH_LM_HEAD_MAPPING.keys()) | |
) | |
) | |
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |
r""" Instantiates one of the language modeling model classes of the library | |
from a pre-trained model configuration. | |
The `from_pretrained()` method takes care of returning the correct model class instance | |
based on the `model_type` property of the config object, or when it's missing, | |
falling back to using pattern matching on the `pretrained_model_name_or_path` string. | |
The model class to instantiate is selected as the first pattern matching | |
in the `pretrained_model_name_or_path` string (in the following order): | |
- contains `t5`: TFT5WithLMHeadModel (T5 model) | |
- contains `distilbert`: TFDistilBertForMaskedLM (DistilBERT model) | |
- contains `roberta`: TFRobertaForMaskedLM (RoBERTa model) | |
- contains `bert`: TFBertForMaskedLM (Bert model) | |
- contains `openai-gpt`: TFOpenAIGPTLMHeadModel (OpenAI GPT model) | |
- contains `gpt2`: TFGPT2LMHeadModel (OpenAI GPT-2 model) | |
- contains `transfo-xl`: TFTransfoXLLMHeadModel (Transformer-XL model) | |
- contains `xlnet`: TFXLNetLMHeadModel (XLNet model) | |
- contains `xlm`: TFXLMWithLMHeadModel (XLM model) | |
- contains `ctrl`: TFCTRLLMHeadModel (CTRL model) | |
Params: | |
pretrained_model_name_or_path: either: | |
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. | |
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. | |
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. | |
- a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument. | |
from_pt: (`Optional`) Boolean | |
Set to True if the Checkpoint is a PyTorch checkpoint. | |
model_args: (`optional`) Sequence of positional arguments: | |
All remaning positional arguments will be passed to the underlying model's ``__init__`` method | |
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: | |
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: | |
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or | |
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. | |
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. | |
state_dict: (`optional`) dict: | |
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. | |
This option can be used if you want to create a model from a pretrained configuration but load your own weights. | |
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. | |
cache_dir: (`optional`) string: | |
Path to a directory in which a downloaded pre-trained model | |
configuration should be cached if the standard cache should not be used. | |
force_download: (`optional`) boolean, default False: | |
Force to (re-)download the model weights and configuration files and override the cached versions if they exists. | |
resume_download: (`optional`) boolean, default False: | |
Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. | |
proxies: (`optional`) dict, default None: | |
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. | |
The proxies are used on each request. | |
output_loading_info: (`optional`) boolean: | |
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. | |
kwargs: (`optional`) Remaining dictionary of keyword arguments: | |
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: | |
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) | |
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. | |
Examples:: | |
model = TFAutoModelWithLMHead.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. | |
model = TFAutoModelWithLMHead.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
model = TFAutoModelWithLMHead.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading | |
assert model.config.output_attention == True | |
# Loading from a TF checkpoint file instead of a PyTorch model (slower) | |
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') | |
model = TFAutoModelWithLMHead.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config) | |
""" | |
config = kwargs.pop("config", None) | |
if not isinstance(config, PretrainedConfig): | |
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) | |
for config_class, model_class in TF_MODEL_WITH_LM_HEAD_MAPPING.items(): | |
if isinstance(config, config_class): | |
return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs) | |
raise ValueError( | |
"Unrecognized configuration class {} for this kind of TFAutoModel: {}.\n" | |
"Model type should be one of {}.".format( | |
config.__class__, cls.__name__, ", ".join(c.__name__ for c in TF_MODEL_WITH_LM_HEAD_MAPPING.keys()) | |
) | |
) | |
class TFAutoModelForSequenceClassification(object): | |
r""" | |
:class:`~transformers.TFAutoModelForSequenceClassification` is a generic model class | |
that will be instantiated as one of the sequence classification model classes of the library | |
when created with the `TFAutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)` | |
class method. | |
The `from_pretrained()` method takes care of returning the correct model class instance | |
based on the `model_type` property of the config object, or when it's missing, | |
falling back to using pattern matching on the `pretrained_model_name_or_path` string. | |
The model class to instantiate is selected as the first pattern matching | |
in the `pretrained_model_name_or_path` string (in the following order): | |
- contains `distilbert`: TFDistilBertForSequenceClassification (DistilBERT model) | |
- contains `roberta`: TFRobertaForSequenceClassification (RoBERTa model) | |
- contains `bert`: TFBertForSequenceClassification (Bert model) | |
- contains `xlnet`: TFXLNetForSequenceClassification (XLNet model) | |
- contains `xlm`: TFXLMForSequenceClassification (XLM model) | |
This class cannot be instantiated using `__init__()` (throws an error). | |
""" | |
def __init__(self): | |
raise EnvironmentError( | |
"TFAutoModelForSequenceClassification is designed to be instantiated " | |
"using the `TFAutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)` or " | |
"`TFAutoModelForSequenceClassification.from_config(config)` methods." | |
) | |
def from_config(cls, config): | |
r""" Instantiates one of the base model classes of the library | |
from a configuration. | |
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: | |
The model class to instantiate is selected based on the configuration class: | |
- isInstance of `distilbert` configuration class: DistilBertModel (DistilBERT model) | |
- isInstance of `roberta` configuration class: RobertaModel (RoBERTa model) | |
- isInstance of `bert` configuration class: BertModel (Bert model) | |
- isInstance of `xlnet` configuration class: XLNetModel (XLNet model) | |
- isInstance of `xlm` configuration class: XLMModel (XLM model) | |
Examples:: | |
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. | |
model = AutoModelForSequenceClassification.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
""" | |
for config_class, model_class in TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.items(): | |
if isinstance(config, config_class): | |
return model_class(config) | |
raise ValueError( | |
"Unrecognized configuration class {} for this kind of TFAutoModel: {}.\n" | |
"Model type should be one of {}.".format( | |
config.__class__, | |
cls.__name__, | |
", ".join(c.__name__ for c in TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys()), | |
) | |
) | |
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |
r""" Instantiates one of the sequence classification model classes of the library | |
from a pre-trained model configuration. | |
The `from_pretrained()` method takes care of returning the correct model class instance | |
based on the `model_type` property of the config object, or when it's missing, | |
falling back to using pattern matching on the `pretrained_model_name_or_path` string. | |
The model class to instantiate is selected as the first pattern matching | |
in the `pretrained_model_name_or_path` string (in the following order): | |
- contains `distilbert`: TFDistilBertForSequenceClassification (DistilBERT model) | |
- contains `roberta`: TFRobertaForSequenceClassification (RoBERTa model) | |
- contains `bert`: TFBertForSequenceClassification (Bert model) | |
- contains `xlnet`: TFXLNetForSequenceClassification (XLNet model) | |
- contains `xlm`: TFXLMForSequenceClassification (XLM model) | |
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated) | |
To train the model, you should first set it back in training mode with `model.train()` | |
Params: | |
pretrained_model_name_or_path: either: | |
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. | |
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. | |
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. | |
- a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument. | |
from_pt: (`Optional`) Boolean | |
Set to True if the Checkpoint is a PyTorch checkpoint. | |
model_args: (`optional`) Sequence of positional arguments: | |
All remaning positional arguments will be passed to the underlying model's ``__init__`` method | |
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: | |
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: | |
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or | |
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. | |
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. | |
state_dict: (`optional`) dict: | |
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. | |
This option can be used if you want to create a model from a pretrained configuration but load your own weights. | |
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. | |
cache_dir: (`optional`) string: | |
Path to a directory in which a downloaded pre-trained model | |
configuration should be cached if the standard cache should not be used. | |
force_download: (`optional`) boolean, default False: | |
Force to (re-)download the model weights and configuration files and override the cached versions if they exists. | |
resume_download: (`optional`) boolean, default False: | |
Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. | |
proxies: (`optional`) dict, default None: | |
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. | |
The proxies are used on each request. | |
output_loading_info: (`optional`) boolean: | |
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. | |
kwargs: (`optional`) Remaining dictionary of keyword arguments: | |
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: | |
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) | |
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. | |
Examples:: | |
model = TFAutoModelForSequenceClassification.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. | |
model = TFAutoModelForSequenceClassification.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
model = TFAutoModelForSequenceClassification.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading | |
assert model.config.output_attention == True | |
# Loading from a TF checkpoint file instead of a PyTorch model (slower) | |
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') | |
model = TFAutoModelForSequenceClassification.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config) | |
""" | |
config = kwargs.pop("config", None) | |
if not isinstance(config, PretrainedConfig): | |
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) | |
for config_class, model_class in TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.items(): | |
if isinstance(config, config_class): | |
return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs) | |
raise ValueError( | |
"Unrecognized configuration class {} for this kind of TFAutoModel: {}.\n" | |
"Model type should be one of {}.".format( | |
config.__class__, | |
cls.__name__, | |
", ".join(c.__name__ for c in TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys()), | |
) | |
) | |
class TFAutoModelForQuestionAnswering(object): | |
r""" | |
:class:`~transformers.TFAutoModelForQuestionAnswering` is a generic model class | |
that will be instantiated as one of the question answering model classes of the library | |
when created with the `TFAutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)` | |
class method. | |
The `from_pretrained()` method takes care of returning the correct model class instance | |
based on the `model_type` property of the config object, or when it's missing, | |
falling back to using pattern matching on the `pretrained_model_name_or_path` string. | |
The model class to instantiate is selected as the first pattern matching | |
in the `pretrained_model_name_or_path` string (in the following order): | |
- contains `distilbert`: TFDistilBertForQuestionAnswering (DistilBERT model) | |
- contains `bert`: TFBertForQuestionAnswering (Bert model) | |
- contains `xlnet`: TFXLNetForQuestionAnswering (XLNet model) | |
- contains `xlm`: TFXLMForQuestionAnswering (XLM model) | |
This class cannot be instantiated using `__init__()` (throws an error). | |
""" | |
def __init__(self): | |
raise EnvironmentError( | |
"TFAutoModelForQuestionAnswering is designed to be instantiated " | |
"using the `TFAutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)` or " | |
"`TFAutoModelForQuestionAnswering.from_config(config)` methods." | |
) | |
def from_config(cls, config): | |
r""" Instantiates one of the base model classes of the library | |
from a configuration. | |
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: | |
The model class to instantiate is selected based on the configuration class: | |
- isInstance of `distilbert` configuration class: DistilBertModel (DistilBERT model) | |
- isInstance of `bert` configuration class: BertModel (Bert model) | |
- isInstance of `xlnet` configuration class: XLNetModel (XLNet model) | |
- isInstance of `xlm` configuration class: XLMModel (XLM model) | |
Examples:: | |
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. | |
model = AutoModelForSequenceClassification.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
""" | |
for config_class, model_class in TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING.items(): | |
if isinstance(config, config_class): | |
return model_class(config) | |
raise ValueError( | |
"Unrecognized configuration class {} for this kind of TFAutoModel: {}.\n" | |
"Model type should be one of {}.".format( | |
config.__class__, | |
cls.__name__, | |
", ".join(c.__name__ for c in TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()), | |
) | |
) | |
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |
r""" Instantiates one of the question answering model classes of the library | |
from a pre-trained model configuration. | |
The `from_pretrained()` method takes care of returning the correct model class instance | |
based on the `model_type` property of the config object, or when it's missing, | |
falling back to using pattern matching on the `pretrained_model_name_or_path` string. | |
The model class to instantiate is selected as the first pattern matching | |
in the `pretrained_model_name_or_path` string (in the following order): | |
- contains `distilbert`: TFDistilBertForQuestionAnswering (DistilBERT model) | |
- contains `bert`: TFBertForQuestionAnswering (Bert model) | |
- contains `xlnet`: TFXLNetForQuestionAnswering (XLNet model) | |
- contains `xlm`: TFXLMForQuestionAnswering (XLM model) | |
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated) | |
To train the model, you should first set it back in training mode with `model.train()` | |
Params: | |
pretrained_model_name_or_path: either: | |
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. | |
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. | |
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. | |
- a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument. | |
from_pt: (`Optional`) Boolean | |
Set to True if the Checkpoint is a PyTorch checkpoint. | |
model_args: (`optional`) Sequence of positional arguments: | |
All remaning positional arguments will be passed to the underlying model's ``__init__`` method | |
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: | |
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: | |
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or | |
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. | |
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. | |
state_dict: (`optional`) dict: | |
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. | |
This option can be used if you want to create a model from a pretrained configuration but load your own weights. | |
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. | |
cache_dir: (`optional`) string: | |
Path to a directory in which a downloaded pre-trained model | |
configuration should be cached if the standard cache should not be used. | |
force_download: (`optional`) boolean, default False: | |
Force to (re-)download the model weights and configuration files and override the cached versions if they exists. | |
resume_download: (`optional`) boolean, default False: | |
Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. | |
proxies: (`optional`) dict, default None: | |
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. | |
The proxies are used on each request. | |
output_loading_info: (`optional`) boolean: | |
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. | |
kwargs: (`optional`) Remaining dictionary of keyword arguments: | |
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: | |
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) | |
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. | |
Examples:: | |
model = TFAutoModelForQuestionAnswering.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. | |
model = TFAutoModelForQuestionAnswering.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
model = TFAutoModelForQuestionAnswering.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading | |
assert model.config.output_attention == True | |
# Loading from a TF checkpoint file instead of a PyTorch model (slower) | |
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') | |
model = TFAutoModelForQuestionAnswering.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config) | |
""" | |
config = kwargs.pop("config", None) | |
if not isinstance(config, PretrainedConfig): | |
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) | |
for config_class, model_class in TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING.items(): | |
if isinstance(config, config_class): | |
return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs) | |
raise ValueError( | |
"Unrecognized configuration class {} for this kind of TFAutoModel: {}.\n" | |
"Model type should be one of {}.".format( | |
config.__class__, | |
cls.__name__, | |
", ".join(c.__name__ for c in TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()), | |
) | |
) | |
class TFAutoModelForTokenClassification: | |
def __init__(self): | |
raise EnvironmentError( | |
"TFAutoModelForTokenClassification is designed to be instantiated " | |
"using the `TFAutoModelForTokenClassification.from_pretrained(pretrained_model_name_or_path)` or " | |
"`AutoModelForTokenClassification.from_config(config)` methods." | |
) | |
def from_config(cls, config): | |
r""" Instantiates one of the base model classes of the library | |
from a configuration. | |
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: | |
The model class to instantiate is selected based on the configuration class: | |
- isInstance of `bert` configuration class: BertModel (Bert model) | |
- isInstance of `xlnet` configuration class: XLNetModel (XLNet model) | |
- isInstance of `distilbert` configuration class: DistilBertModel (DistilBert model) | |
- isInstance of `roberta` configuration class: RobteraModel (Roberta model) | |
Examples:: | |
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. | |
model = TFAutoModelForTokenClassification.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
""" | |
for config_class, model_class in TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items(): | |
if isinstance(config, config_class): | |
return model_class(config) | |
raise ValueError( | |
"Unrecognized configuration class {} for this kind of TFAutoModel: {}.\n" | |
"Model type should be one of {}.".format( | |
config.__class__, | |
cls.__name__, | |
", ".join(c.__name__ for c in TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys()), | |
) | |
) | |
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |
r""" Instantiates one of the question answering model classes of the library | |
from a pre-trained model configuration. | |
The `from_pretrained()` method takes care of returning the correct model class instance | |
based on the `model_type` property of the config object, or when it's missing, | |
falling back to using pattern matching on the `pretrained_model_name_or_path` string. | |
The model class to instantiate is selected as the first pattern matching | |
in the `pretrained_model_name_or_path` string (in the following order): | |
- contains `bert`: BertForTokenClassification (Bert model) | |
- contains `xlnet`: XLNetForTokenClassification (XLNet model) | |
- contains `distilbert`: DistilBertForTokenClassification (DistilBert model) | |
- contains `roberta`: RobertaForTokenClassification (Roberta model) | |
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated) | |
To train the model, you should first set it back in training mode with `model.train()` | |
Params: | |
pretrained_model_name_or_path: either: | |
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. | |
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. | |
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. | |
model_args: (`optional`) Sequence of positional arguments: | |
All remaning positional arguments will be passed to the underlying model's ``__init__`` method | |
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`: | |
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: | |
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or | |
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. | |
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. | |
state_dict: (`optional`) dict: | |
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. | |
This option can be used if you want to create a model from a pretrained configuration but load your own weights. | |
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. | |
cache_dir: (`optional`) string: | |
Path to a directory in which a downloaded pre-trained model | |
configuration should be cached if the standard cache should not be used. | |
force_download: (`optional`) boolean, default False: | |
Force to (re-)download the model weights and configuration files and override the cached versions if they exists. | |
proxies: (`optional`) dict, default None: | |
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. | |
The proxies are used on each request. | |
output_loading_info: (`optional`) boolean: | |
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. | |
kwargs: (`optional`) Remaining dictionary of keyword arguments: | |
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: | |
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) | |
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. | |
Examples:: | |
model = TFAutoModelForTokenClassification.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. | |
model = TFAutoModelForTokenClassification.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
model = TFAutoModelForTokenClassification.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading | |
assert model.config.output_attention == True | |
# Loading from a TF checkpoint file instead of a PyTorch model (slower) | |
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') | |
model = TFAutoModelForTokenClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) | |
""" | |
config = kwargs.pop("config", None) | |
if not isinstance(config, PretrainedConfig): | |
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) | |
for config_class, model_class in TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items(): | |
if isinstance(config, config_class): | |
return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs) | |
raise ValueError( | |
"Unrecognized configuration class {} for this kind of TFAutoModel: {}.\n" | |
"Model type should be one of {}.".format( | |
config.__class__, | |
cls.__name__, | |
", ".join(c.__name__ for c in TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys()), | |
) | |
) | |