|
import cv2 |
|
import numpy as np |
|
import torch |
|
from torch.utils.data import Dataset |
|
import os |
|
cv2.setNumThreads(1) |
|
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" |
|
|
|
|
|
class RandomResizedCropWithAutoCenteringAndZeroPadding (object): |
|
def __init__(self, output_size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), center_jitter=(0.1, 0.1), size_from_alpha_mask=True): |
|
assert isinstance(output_size, (int, tuple)) |
|
if isinstance(output_size, int): |
|
self.output_size = (output_size, output_size) |
|
else: |
|
assert len(output_size) == 2 |
|
self.output_size = output_size |
|
assert isinstance(scale, tuple) |
|
assert isinstance(ratio, tuple) |
|
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): |
|
raise ValueError("Scale and ratio should be of kind (min, max)") |
|
self.size_from_alpha_mask = size_from_alpha_mask |
|
self.scale = scale |
|
self.ratio = ratio |
|
assert isinstance(center_jitter, tuple) |
|
self.center_jitter = center_jitter |
|
|
|
def __call__(self, sample): |
|
imidx, image = sample['imidx'], sample["image_np"] |
|
if "labels" in sample: |
|
label = sample["labels"] |
|
else: |
|
label = None |
|
|
|
im_h, im_w = image.shape[:2] |
|
if self.size_from_alpha_mask and image.shape[2] == 4: |
|
|
|
bbox_left, bbox_top, bbox_w, bbox_h = cv2.boundingRect( |
|
(image[:, :, 3] > 0).astype(np.uint8)) |
|
else: |
|
bbox_left, bbox_top = 0, 0 |
|
bbox_h, bbox_w = image.shape[:2] |
|
if bbox_h <= 1 and bbox_w <= 1: |
|
sample["bad"] = 0 |
|
else: |
|
|
|
alpha_varea = np.sum((image[:, :, 3] > 0).astype(np.uint8)) |
|
image_area = image.shape[0]*image.shape[1] |
|
if alpha_varea/image_area < 0.001: |
|
sample["bad"] = alpha_varea |
|
|
|
if "bad" in sample: |
|
|
|
|
|
bbox_h, bbox_w = image.shape[:2] |
|
sample["image_np"] = np.zeros( |
|
[self.output_size[0], self.output_size[1], image.shape[2]], dtype=image.dtype) |
|
if label is not None: |
|
sample["labels"] = np.zeros( |
|
[self.output_size[0], self.output_size[1], 4], dtype=label.dtype) |
|
|
|
return sample |
|
|
|
|
|
|
|
jitter_h = np.random.uniform(-bbox_h * |
|
self.center_jitter[0], bbox_h*self.center_jitter[0]) |
|
jitter_w = np.random.uniform(-bbox_w * |
|
self.center_jitter[1], bbox_w*self.center_jitter[1]) |
|
|
|
|
|
target_aspect_ratio = np.exp( |
|
np.log(self.output_size[0]/self.output_size[1]) + |
|
np.random.uniform(np.log(self.ratio[0]), np.log(self.ratio[1])) |
|
) |
|
|
|
source_aspect_ratio = bbox_h/bbox_w |
|
|
|
if target_aspect_ratio < source_aspect_ratio: |
|
|
|
target_height = bbox_h * \ |
|
np.random.uniform(self.scale[0], self.scale[1]) |
|
virtual_h = int( |
|
round(target_height)) |
|
virtual_w = int( |
|
round(target_height / target_aspect_ratio)) |
|
else: |
|
|
|
target_width = bbox_w * \ |
|
np.random.uniform(self.scale[0], self.scale[1]) |
|
virtual_h = int( |
|
round(target_width * target_aspect_ratio)) |
|
virtual_w = int( |
|
round(target_width)) |
|
|
|
|
|
|
|
virtual_top = int(round(bbox_top + jitter_h - (virtual_h-bbox_h)/2)) |
|
virutal_left = int(round(bbox_left + jitter_w - (virtual_w-bbox_w)/2)) |
|
|
|
if virtual_top < 0: |
|
top_padding = abs(virtual_top) |
|
crop_top = 0 |
|
else: |
|
top_padding = 0 |
|
crop_top = virtual_top |
|
if virutal_left < 0: |
|
left_padding = abs(virutal_left) |
|
crop_left = 0 |
|
else: |
|
left_padding = 0 |
|
crop_left = virutal_left |
|
if virtual_top+virtual_h > im_h: |
|
bottom_padding = abs(im_h-(virtual_top+virtual_h)) |
|
crop_bottom = im_h |
|
else: |
|
bottom_padding = 0 |
|
crop_bottom = virtual_top+virtual_h |
|
if virutal_left+virtual_w > im_w: |
|
right_padding = abs(im_w-(virutal_left+virtual_w)) |
|
crop_right = im_w |
|
else: |
|
right_padding = 0 |
|
crop_right = virutal_left+virtual_w |
|
|
|
|
|
image = image[crop_top:crop_bottom, crop_left: crop_right] |
|
if label is not None: |
|
label = label[crop_top:crop_bottom, crop_left: crop_right] |
|
|
|
|
|
if top_padding + bottom_padding + left_padding + right_padding > 0: |
|
padding = ((top_padding, bottom_padding), |
|
(left_padding, right_padding), (0, 0)) |
|
|
|
image = np.pad(image, padding, mode='constant') |
|
if label is not None: |
|
label = np.pad(label, padding, mode='constant') |
|
|
|
if image.shape[0]/image.shape[1] - virtual_h/virtual_w > 0.001: |
|
print("virtual aspect ratio:", virtual_h/virtual_w) |
|
print("image aspect ratio:", image.shape[0]/image.shape[1]) |
|
assert (image.shape[0]/image.shape[1] - virtual_h/virtual_w < 0.001) |
|
sample["crop"] = np.array( |
|
[im_h, im_w, crop_top, crop_bottom, crop_left, crop_right, top_padding, bottom_padding, left_padding, right_padding, image.shape[0], image.shape[1]]) |
|
|
|
|
|
if self.output_size[1] != image.shape[1] or self.output_size[0] != image.shape[0]: |
|
if self.output_size[1] > image.shape[1] and self.output_size[0] > image.shape[0]: |
|
|
|
image = cv2.resize( |
|
image, (self.output_size[1], self.output_size[0]), interpolation=cv2.INTER_LINEAR) |
|
else: |
|
|
|
image = cv2.resize( |
|
image, (self.output_size[1], self.output_size[0]), interpolation=cv2.INTER_AREA) |
|
|
|
if label is not None: |
|
label = cv2.resize(label, (self.output_size[1], self.output_size[0]), |
|
interpolation=cv2.INTER_NEAREST_EXACT) |
|
|
|
assert image.shape[0] == self.output_size[0] and image.shape[1] == self.output_size[1] |
|
sample['imidx'], sample["image_np"] = imidx, image |
|
if label is not None: |
|
assert label.shape[0] == self.output_size[0] and label.shape[1] == self.output_size[1] |
|
sample["labels"] = label |
|
|
|
return sample |
|
|
|
|
|
class FileDataset(Dataset): |
|
def __init__(self, image_names_list, fg_img_lbl_transform=None, shader_pose_use_gt_udp_test=True, shader_target_use_gt_rgb_debug=False): |
|
self.image_name_list = image_names_list |
|
self.fg_img_lbl_transform = fg_img_lbl_transform |
|
self.shader_pose_use_gt_udp_test = shader_pose_use_gt_udp_test |
|
self.shader_target_use_gt_rgb_debug = shader_target_use_gt_rgb_debug |
|
|
|
def __len__(self): |
|
return len(self.image_name_list) |
|
|
|
def get_gt_from_disk(self, idx, imname, read_label): |
|
if read_label: |
|
|
|
with open(imname, mode="rb") as bio: |
|
if imname.find(".npz") > 0: |
|
label_np = np.load(bio, allow_pickle=True)[ |
|
'i'].astype(np.float32, copy=False) |
|
else: |
|
label_np = cv2.cvtColor(cv2.imdecode(np.frombuffer(bio.read( |
|
), np.uint8), cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH | cv2.IMREAD_UNCHANGED), cv2.COLOR_BGRA2RGBA) |
|
assert (4 == label_np.shape[2]) |
|
|
|
image_np = (label_np*255).clip(0, 255).astype(np.uint8, copy=False) |
|
|
|
sample = {'imidx': np.array( |
|
[idx]), "image_np": image_np, "labels": label_np} |
|
|
|
else: |
|
|
|
with open(imname, mode="rb") as bio: |
|
image_np = cv2.cvtColor(cv2.imdecode(np.frombuffer( |
|
bio.read(), np.uint8), cv2.IMREAD_UNCHANGED), cv2.COLOR_BGRA2RGBA) |
|
|
|
|
|
assert (3 == len(image_np.shape)) |
|
if (image_np.shape[2] == 4): |
|
mask_np = image_np[:, :, 3:4] |
|
image_np = (image_np[:, :, :3] * |
|
(image_np[:, :, 3][:, :, np.newaxis]/255.0)).clip(0, 255).astype(np.uint8, copy=False) |
|
elif (image_np.shape[2] == 3): |
|
|
|
|
|
mask_np = np.ones( |
|
(image_np.shape[0], image_np.shape[1], 1), dtype=np.uint8)*255 |
|
print("WARN: transparent background is preferred for image ", imname) |
|
else: |
|
raise ValueError("weird shape of image ", imname, image_np) |
|
image_np = np.concatenate((image_np, mask_np), axis=2) |
|
sample = {'imidx': np.array( |
|
[idx]), "image_np": image_np} |
|
|
|
|
|
if self.fg_img_lbl_transform: |
|
sample = self.fg_img_lbl_transform(sample) |
|
|
|
if "labels" in sample: |
|
|
|
if "float" not in str(sample["labels"].dtype): |
|
sample["labels"] = sample["labels"].astype(np.float32) / np.iinfo(sample["labels"].dtype).max |
|
sample["labels"] = torch.from_numpy( |
|
sample["labels"].transpose((2, 0, 1))) |
|
assert (sample["labels"].dtype == torch.float32) |
|
|
|
if "image_np" in sample: |
|
|
|
sample["mask"] = torch.from_numpy( |
|
sample["image_np"][:, :, 3:4].transpose((2, 0, 1))) |
|
assert (sample["mask"].dtype == torch.uint8) |
|
sample["image"] = torch.from_numpy( |
|
sample["image_np"][:, :, :3].transpose((2, 0, 1))) |
|
|
|
assert (sample["image"].dtype == torch.uint8) |
|
del sample["image_np"] |
|
return sample |
|
|
|
def __getitem__(self, idx): |
|
sample = { |
|
'imidx': np.array([idx])} |
|
target = self.get_gt_from_disk( |
|
idx, imname=self.image_name_list[idx][0], read_label=self.shader_pose_use_gt_udp_test) |
|
if self.shader_target_use_gt_rgb_debug: |
|
sample["pose_images"] = torch.stack([target["image"]]) |
|
sample["pose_mask"] = target["mask"] |
|
elif self.shader_pose_use_gt_udp_test: |
|
sample["pose_label"] = target["labels"] |
|
sample["pose_mask"] = target["mask"] |
|
else: |
|
sample["pose_images"] = torch.stack([target["image"]]) |
|
if "crop" in target: |
|
sample["pose_crop"] = target["crop"] |
|
character_images = [] |
|
character_masks = [] |
|
for i in range(1, len(self.image_name_list[idx])): |
|
source = self.get_gt_from_disk( |
|
idx, self.image_name_list[idx][i], read_label=False) |
|
character_images.append(source["image"]) |
|
character_masks.append(source["mask"]) |
|
character_images = torch.stack(character_images) |
|
character_masks = torch.stack(character_masks) |
|
sample.update({ |
|
"character_images": character_images, |
|
"character_masks": character_masks |
|
}) |
|
|
|
return sample |
|
|