import torch import gradio as gr from vlm_captions import VLMCaptioning from llm_inference_video import VideoLLMInferenceNode # Initialize the VLMCaptioning model once at startup print("Initializing Video Prompt Generator...") vlm_captioner = VLMCaptioning() print("Video Prompt Generator initialized successfully!") title = """
Generate creative video prompts with technical specifications
You can use prompts with Kling, MiniMax, Hunyuan, Haiper, CogVideoX, Luma, LTX, Runway, PixVerse.
""" def create_video_interface(): llm_node = VideoLLMInferenceNode() with gr.Blocks(theme='bethecloud/storj_theme') as demo: gr.HTML(title) with gr.Tab("Video Prompt Generator"): with gr.Row(): with gr.Column(scale=1): input_concept = gr.Textbox(label="Core Concept/Thematic Input", lines=3) style = gr.Dropdown( choices=["Minimalist", "Simple", "Detailed", "Descriptive", "Dynamic", "Cinematic", "Documentary", "Animation", "Action", "Experimental"], value="Simple", label="Video Style" ) custom_elements = gr.Textbox(label="Custom Technical Elements", placeholder="e.g., Infrared hybrid, Datamosh transitions") prompt_length = gr.Dropdown( choices=["Short", "Medium", "Long"], value="Medium", label="Prompt Length" ) with gr.Column(scale=1): camera_direction = gr.Dropdown( choices=[ "None", "Zoom in", "Zoom out", "Pan left", "Pan right", "Tilt up", "Tilt down", "Orbital rotation", "Push in", "Pull out", "Track forward", "Track backward", "Spiral in", "Spiral out", "Arc movement", "Diagonal traverse", "Vertical rise", "Vertical descent" ], value="None", label="Camera Direction" ) camera_style = gr.Dropdown( choices=[ "None", "Steadicam flow", "Drone aerials", "Handheld urgency", "Crane elegance", "Dolly precision", "VR 360", "Multi-angle rig", "Static tripod", "Gimbal smoothness", "Slider motion", "Jib sweep", "POV immersion", "Time-slice array", "Macro extreme", "Tilt-shift miniature", "Snorricam character", "Whip pan dynamics", "Dutch angle tension", "Underwater housing", "Periscope lens" ], value="None", label="Camera Movement Style" ) pacing = gr.Dropdown( choices=[ "None", "Slow burn", "Rhythmic pulse", "Frantic energy", "Ebb and flow", "Hypnotic drift", "Time-lapse rush", "Stop-motion staccato", "Gradual build", "Quick cut rhythm", "Long take meditation", "Jump cut energy", "Match cut flow", "Cross-dissolve dreamscape", "Parallel action", "Slow motion impact", "Ramping dynamics", "Montage tempo", "Continuous flow", "Episodic breaks" ], value="None", label="Pacing Rhythm" ) special_effects = gr.Dropdown( choices=[ "None", "Practical effects", "CGI enhancement", "Analog glitches", "Light painting", "Projection mapping", "Nanosecond exposures", "Double exposure", "Smoke diffusion", "Lens flare artistry", "Particle systems", "Holographic overlay", "Chromatic aberration", "Digital distortion", "Wire removal", "Motion capture", "Miniature integration", "Weather simulation", "Color grading", "Mixed media composite", "Neural style transfer" ], value="None", label="SFX Approach" ) with gr.Column(scale=1): provider = gr.Dropdown( choices=["SambaNova", "Groq"], value="SambaNova", label="LLM Provider" ) model = gr.Dropdown( choices=[ "Meta-Llama-3.1-70B-Instruct", "Meta-Llama-3.1-405B-Instruct", "Meta-Llama-3.1-8B-Instruct" ], value="Meta-Llama-3.1-70B-Instruct", label="Model" ) generate_btn = gr.Button("Generate Video Prompt", variant="primary") output = gr.Textbox(label="Generated Prompt", lines=12, show_copy_button=True) def update_models(provider): models = { "Groq": ["llama-3.3-70b-versatile"], "SambaNova": [ "Meta-Llama-3.1-70B-Instruct", "Meta-Llama-3.1-405B-Instruct", "Meta-Llama-3.1-8B-Instruct" ] } return gr.Dropdown(choices=models[provider], value=models[provider][0]) provider.change(update_models, inputs=provider, outputs=model) generate_btn.click( llm_node.generate_video_prompt, inputs=[input_concept, style, camera_style, camera_direction, pacing, special_effects, custom_elements, provider, model, prompt_length], outputs=output ) with gr.Tab("Visual Analysis"): with gr.Row(): with gr.Column(): image_input = gr.Image(label="Upload Image", type="filepath") image_question = gr.Textbox( label="Question (optional)", placeholder="What is in this image?" ) analyze_image_btn = gr.Button("Analyze Image") image_output = gr.Textbox(label="Analysis Result", lines=5) with gr.Column(): video_input = gr.Video(label="Upload Video") analyze_video_btn = gr.Button("Analyze Video") video_output = gr.Textbox(label="Video Analysis", lines=10) analyze_image_btn.click( llm_node.analyze_image, inputs=[image_input, image_question], outputs=image_output ) analyze_video_btn.click( llm_node.analyze_video, inputs=video_input, outputs=video_output ) return demo def describe_image_interface(image, question="Describe this image in detail.", temperature=0.7, top_p=0.9, top_k=40, max_new_tokens=512): """Interface function for image description""" if image is None: return "Please upload an image." return vlm_captioner.describe_image( image=image, question=question, temperature=temperature, top_p=top_p, top_k=top_k, max_new_tokens=max_new_tokens ) def describe_video_interface(video, frame_interval=30, temperature=0.7, top_p=0.9, top_k=40, max_new_tokens=512): """Interface function for video description""" if video is None: return "Please upload a video." return vlm_captioner.describe_video( video_path=video, frame_interval=frame_interval, temperature=temperature, top_p=top_p, top_k=top_k, max_new_tokens=max_new_tokens ) if __name__ == "__main__": demo = create_video_interface() demo.launch(share=True)