import spaces import torch import gradio as gr from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig from transformers import T5EncoderModel, BitsAndBytesConfig as BitsAndBytesConfigTF # Initialize model outside the function device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.bfloat16 single_file_base_model = "camenduru/FLUX.1-dev-diffusers" file_url = "https://huggingface.co/lodestones/Chroma/resolve/main/chroma-unlocked-v31.safetensors" quantization_config_tf = BitsAndBytesConfigTF(load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16) text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf) quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16) transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config) flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype) flux_pipeline.to(device) @spaces.GPU() def generate_image(prompt, negative_prompt="", num_inference_steps=30, guidance_scale=7.5): # Generate image image = flux_pipeline( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale ).images[0] return image # Create Gradio interface iface = gr.Interface( fn=generate_image, inputs=[ gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."), gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt here...", value=""), gr.Slider(minimum=1, maximum=100, value=30, step=1, label="Number of Inference Steps"), gr.Slider(minimum=1.0, maximum=20.0, value=7.5, step=0.1, label="Guidance Scale") ], outputs=gr.Image(label="Generated Image"), title="Chroma Image Generator", description="Generate images using the Chroma model with FLUX pipeline", examples=[ ["A beautiful sunset over mountains, photorealistic, 8k", "blurry, low quality, distorted", 30, 7.5], ["A futuristic cityscape at night, neon lights, cyberpunk style", "ugly, deformed, low resolution", 30, 7.5] ] ) if __name__ == "__main__": iface.launch()