Chroma-Extra / llm_inference_video.py
gokaygokay's picture
add init
2022eac
raw
history blame
17.7 kB
import os
import time
import requests
from typing import Optional, Dict, Any, List
import json
import tempfile
from PIL import Image
from groq import Groq
from openai import OpenAI
import spaces
class VideoLLMInferenceNode:
def __init__(self):
"""
Initialize the VideoLLMInferenceNode without VLM captioning dependency
"""
self.sambanova_api_key = os.environ.get("SAMBANOVA_API_KEY", "")
self.groq_api_key = os.environ.get("GROQ_API_KEY", "")
# Initialize API clients if keys are available
if self.groq_api_key:
self.groq_client = Groq(api_key=self.groq_api_key)
else:
self.groq_client = None
if self.sambanova_api_key:
self.sambanova_client = OpenAI(
api_key=self.sambanova_api_key,
base_url="https://api.sambanova.ai/v1",
)
else:
self.sambanova_client = None
@spaces.GPU()
def analyze_image(self, image_path: str, question: Optional[str] = None) -> str:
"""
Analyze an image using VLM model directly
Args:
image_path: Path to the image file
question: Optional question to ask about the image
Returns:
str: Analysis result
"""
if not image_path:
return "Please upload an image."
if not question or question.strip() == "":
question = "Describe this image in detail."
try:
# Import and use VLMCaptioning within this GPU-scoped function
from app import get_vlm_captioner
vlm = get_vlm_captioner()
return vlm.describe_image(image_path, question)
except Exception as e:
return f"Error analyzing image: {str(e)}"
@spaces.GPU()
def analyze_video(self, video_path: str) -> str:
"""
Analyze a video using VLM model directly
Args:
video_path: Path to the video file
Returns:
str: Analysis result
"""
if not video_path:
return "Please upload a video."
try:
# Import and use VLMCaptioning within this GPU-scoped function
from app import get_vlm_captioner
vlm = get_vlm_captioner()
return vlm.describe_video(video_path)
except Exception as e:
return f"Error analyzing video: {str(e)}"
def generate_video_prompt(
self,
concept: str,
style: str = "Simple",
camera_style: str = "None",
camera_direction: str = "None",
pacing: str = "None",
special_effects: str = "None",
custom_elements: str = "",
provider: str = "SambaNova",
model: str = "Meta-Llama-3.1-70B-Instruct",
prompt_length: str = "Medium",
image_path: str = "",
video_path: str = ""
) -> str:
"""
Generate a video prompt using the specified LLM provider
Args:
concept: Core concept for the video
style: Video style
camera_style: Camera style
camera_direction: Camera direction
pacing: Pacing rhythm
special_effects: Special effects approach
custom_elements: Custom technical elements
provider: LLM provider (SambaNova or Groq)
model: Model name
prompt_length: Desired prompt length
image_path: Optional path to an image for VLM description
video_path: Optional path to a video for VLM description
Returns:
str: Generated video prompt
"""
if not concept:
return "Please enter a concept for the video."
try:
# Get VLM descriptions if image or video paths are provided
image_description = ""
video_description = ""
if image_path:
try:
image_description = self.analyze_image(image_path, "Describe this image in detail for a video creator.")
print(f"Generated image description: {image_description}")
except Exception as e:
print(f"Error generating image description: {str(e)}")
if video_path:
try:
video_description = self.analyze_video(video_path)
print(f"Generated video description: {video_description}")
except Exception as e:
print(f"Error generating video description: {str(e)}")
# Helper function to format optional elements
def format_element(element, element_type):
if element == "None" or not element:
return ""
element_prefixes = {
"camera": "utilizing",
"direction": "with",
"pacing": "with",
"effects": "incorporating"
}
return f" {element_prefixes.get(element_type, '')} {element}"
# Format camera movement combination
camera_movement = ""
if camera_style != "None" and camera_direction != "None":
camera_movement = f"{camera_style} {camera_direction}"
elif camera_style != "None":
camera_movement = camera_style
elif camera_direction != "None":
camera_movement = camera_direction
# Video prompt templates
default_style = "simple" # Changed from "cinematic" to "simple" as default
prompt_templates = {
"minimalist": f"""Create an elegantly sparse video description focusing on {concept}.
{format_element(camera_movement, 'camera')}
{format_element(pacing, 'pacing')}
{format_element(special_effects, 'effects')}
{' with ' + custom_elements if custom_elements else ''}.""",
"dynamic": f"""Craft an energetic, fast-paced paragraph showcasing {concept} in constant motion. Utilize bold {camera_style} movements and {pacing} rhythm to create momentum. Layer {special_effects} effects and {custom_elements if custom_elements else 'powerful visual elements'} to maintain high energy throughout.""",
"simple": f"""Create a straightforward, easy-to-understand paragraph describing a video about {concept}. Use {camera_style} camera work and {pacing} pacing. Keep the visuals clear and uncomplicated, incorporating {special_effects} effects and {custom_elements if custom_elements else 'basic visual elements'} in an accessible way.""",
"detailed": f"""Construct a meticulous, technically precise paragraph outlining a video about {concept}. Incorporate specific details about {camera_style} cinematography, {pacing} timing, and {special_effects} effects. Include {custom_elements if custom_elements else 'precise technical elements'} while maintaining clarity and depth.""",
"descriptive": f"""Write a richly descriptive paragraph for a video exploring {concept}. Paint a vivid picture using sensory details, incorporating {camera_style} movement, {pacing} flow, and {special_effects} effects. Emphasize texture, color, and atmosphere, enhanced by {custom_elements if custom_elements else 'evocative visual elements'}.""",
"cinematic": f"""Create a single, detailed paragraph describing a cinematic video that captures {concept}. Focus on creating a cohesive narrative that incorporates {style} visual aesthetics, {camera_style} camera work, {pacing} pacing, and {special_effects} effects. Include atmospheric elements like {custom_elements if custom_elements else 'mood lighting and environmental details'} to enhance the storytelling. Describe the visual journey without technical timestamps or shot lists.""",
"documentary": f"""Write a comprehensive paragraph for a documentary-style video exploring {concept}. Blend observational footage with {camera_style} cinematography, incorporating {pacing} editorial rhythm and {special_effects} visual treatments. Focus on creating an immersive narrative that educates and engages, enhanced by {custom_elements if custom_elements else 'authentic moments and natural lighting'}.""",
"animation": f"""Compose a vivid paragraph describing a {style} animated video showcasing {concept}. Detail the unique visual style, character movements, and world-building elements, incorporating {camera_style} perspectives and {pacing} story flow. Include {special_effects} animation effects and {custom_elements if custom_elements else 'signature artistic elements'} to create a memorable visual experience.""",
"action": f"""Craft an energetic paragraph describing an action sequence centered on {concept}. Emphasize the dynamic flow of action using {camera_style} cinematography, {pacing} rhythm, and {special_effects} visual effects. Incorporate {style} stylistic choices and {custom_elements if custom_elements else 'impactful moments'} to create an adrenaline-pumping experience.""",
"experimental": f"""Create an avant-garde paragraph describing an experimental video exploring {concept}. Embrace unconventional storytelling through {style} aesthetics, {camera_style} techniques, and {pacing} temporal flow. Incorporate {special_effects} digital manipulations and {custom_elements if custom_elements else 'abstract visual metaphors'} to challenge traditional narrative structures."""
}
# Get the template with a more neutral default
selected_style = style.lower()
if selected_style not in prompt_templates:
print(f"Warning: Style '{style}' not found, using '{default_style}' template")
selected_style = default_style
base_prompt = prompt_templates[selected_style]
# Configure length requirements
length_config = {
"Short": {
"guidance": "Create exactly very short, ONE impactful sentence that captures the essence of the video. Be concise but descriptive.",
"structure": "Combine all elements into a single, powerful sentence."
},
"Medium": {
"guidance": "Create 2-3 flowing sentences that paint a picture of the video.",
"structure": "First sentence should set the scene, followed by 1-2 sentences developing the concept."
},
"Long": {
"guidance": "Create 4-5 detailed sentences that thoroughly describe the video.",
"structure": "Begin with the setting, develop the action/movement, and conclude with impact."
}
}
config = length_config[prompt_length]
system_message = f"""You are a visionary video director and creative storyteller. {config['guidance']}
Structure: {config['structure']}
Focus on these elements while maintaining the specified sentence count:
1. Visual atmosphere and mood
2. Camera movement and cinematography
3. Narrative flow
4. Style and aesthetic choices
5. Key moments
6. Emotional impact
{'' if not image_description and not video_description else '7. Elements from the provided image/video descriptions'}
{'' if not image_description and not video_description else 'If image or video descriptions are provided, incorporate their key visual elements and content into your description to ensure accuracy and relevance.'}
IMPORTANT REQUIREMENTS:
- Deliver exactly the specified number of sentences
- Short: ONE sentence
- Medium: TWO to THREE sentences
- Long: FOUR to FIVE sentences
- If camera movements are specified, you MUST incorporate them into the description
- Keep everything in a single paragraph format
- Avoid technical specifications or shot lists
- Avoid talking about 'video' or 'videos'. Do not start with 'The video opens with...' or 'The video starts with...' and do not include 'in this video' or 'focus of this video'. kind of terms"""
# Format the user prompt with style guidance and camera movement
user_message = f"""Style Guide: {selected_style.capitalize()} Style
{prompt_templates[selected_style]}
Camera Movement: {camera_movement if camera_movement else 'No specific camera movement'}
Core Concept: {concept}
{f'Reference Image Description: {image_description}' if image_description else ''}
{f'Reference Video Description: {video_description}' if video_description else ''}
Please create a {prompt_length.lower()}-length description incorporating these elements into a cohesive narrative.
{'' if not image_description and not video_description else 'Use the provided image/video descriptions as reference to inform your prompt creation.'}
Avoid talking about 'video' or 'videos'. Do not start with 'The video opens with...' or 'The video starts with...' and do not include 'in this video' or 'focus of this video'. kind of terms. Do not say "Here is your video prompt" or "Here is your video description" or anything like that. Just give the prompt."""
# Call the appropriate API based on provider
if provider == "SambaNova":
if self.sambanova_client:
return self._call_sambanova_client(system_message, user_message, model)
else:
return self._call_sambanova_api(system_message, user_message, model)
elif provider == "Groq":
if self.groq_client:
return self._call_groq_client(system_message, user_message, model)
else:
return self._call_groq_api(system_message, user_message, model)
else:
return "Unsupported provider. Please select SambaNova or Groq."
except Exception as e:
return f"Error generating prompt: {str(e)}"
def _call_sambanova_client(self, system_message: str, user_message: str, model: str) -> str:
"""Call the SambaNova API using the client library"""
try:
chat_completion = self.sambanova_client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
)
return chat_completion.choices[0].message.content
except Exception as e:
return f"Error from SambaNova API: {str(e)}"
def _call_sambanova_api(self, system_message: str, user_message: str, model: str) -> str:
"""Call the SambaNova API using direct HTTP requests"""
if not self.sambanova_api_key:
return "SambaNova API key not configured. Please set the SAMBANOVA_API_KEY environment variable."
api_url = "https://api.sambanova.ai/api/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.sambanova_api_key}"
}
payload = {
"model": model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
}
response = requests.post(api_url, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
return result.get("choices", [{}])[0].get("message", {}).get("content", "No content returned")
else:
return f"Error from SambaNova API: {response.status_code} - {response.text}"
def _call_groq_client(self, system_message: str, user_message: str, model: str) -> str:
"""Call the Groq API using the client library"""
try:
chat_completion = self.groq_client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
)
return chat_completion.choices[0].message.content
except Exception as e:
return f"Error from Groq API: {str(e)}"
def _call_groq_api(self, system_message: str, user_message: str, model: str) -> str:
"""Call the Groq API using direct HTTP requests"""
if not self.groq_api_key:
return "Groq API key not configured. Please set the GROQ_API_KEY environment variable."
api_url = "https://api.groq.com/openai/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.groq_api_key}"
}
payload = {
"model": model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
}
response = requests.post(api_url, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
return result.get("choices", [{}])[0].get("message", {}).get("content", "No content returned")
else:
return f"Error from Groq API: {response.status_code} - {response.text}"