File size: 6,387 Bytes
19b48f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from huggingface_hub import hf_hub_download

# Download required models
t5_path = hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp8_e4m3fn.safetensors", local_dir="models/text_encoders/")
vae_path = hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae")
unet_path = hf_hub_download(repo_id="lodestones/Chroma", filename="chroma-unlocked-v31.safetensors", local_dir="models/unet")

# Import the workflow functions
from my_workflow import (
    get_value_at_index,
    add_comfyui_directory_to_sys_path,
    add_extra_model_paths,
    import_custom_nodes,
    NODE_CLASS_MAPPINGS,
    CLIPTextEncode,
    CLIPLoader,
    VAEDecode,
    UNETLoader,
    VAELoader,
    SaveImage,
)

# Initialize ComfyUI
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
import_custom_nodes()

def generate_image(prompt, negative_prompt, width, height, steps, cfg, seed):
    with torch.inference_mode():
        # Set random seed if provided
        if seed == -1:
            seed = random.randint(1, 2**64)
        random.seed(seed)
        
        randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
        randomnoise_68 = randomnoise.get_noise(noise_seed=seed)

        emptysd3latentimage = NODE_CLASS_MAPPINGS["EmptySD3LatentImage"]()
        emptysd3latentimage_69 = emptysd3latentimage.generate(
            width=width, height=height, batch_size=1
        )

        ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
        ksamplerselect_72 = ksamplerselect.get_sampler(sampler_name="euler")

        cliploader = CLIPLoader()
        cliploader_78 = cliploader.load_clip(
            clip_name="t5xxl_fp8_e4m3fn.safetensors", type="chroma", device="default"
        )

        t5tokenizeroptions = NODE_CLASS_MAPPINGS["T5TokenizerOptions"]()
        t5tokenizeroptions_82 = t5tokenizeroptions.set_options(
            min_padding=1, min_length=0, clip=get_value_at_index(cliploader_78, 0)
        )

        cliptextencode = CLIPTextEncode()
        cliptextencode_74 = cliptextencode.encode(
            text=prompt,
            clip=get_value_at_index(t5tokenizeroptions_82, 0),
        )

        cliptextencode_75 = cliptextencode.encode(
            text=negative_prompt,
            clip=get_value_at_index(t5tokenizeroptions_82, 0),
        )

        unetloader = UNETLoader()
        unetloader_76 = unetloader.load_unet(
            unet_name="chroma-unlocked-v31.safetensors", weight_dtype="fp8_e4m3fn"
        )

        vaeloader = VAELoader()
        vaeloader_80 = vaeloader.load_vae(vae_name="ae.safetensors")

        cfgguider = NODE_CLASS_MAPPINGS["CFGGuider"]()
        basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
        samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
        vaedecode = VAEDecode()
        saveimage = SaveImage()

        cfgguider_73 = cfgguider.get_guider(
            cfg=cfg,
            model=get_value_at_index(unetloader_76, 0),
            positive=get_value_at_index(cliptextencode_74, 0),
            negative=get_value_at_index(cliptextencode_75, 0),
        )

        basicscheduler_84 = basicscheduler.get_sigmas(
            scheduler="beta",
            steps=steps,
            denoise=1,
            model=get_value_at_index(unetloader_76, 0),
        )

        samplercustomadvanced_67 = samplercustomadvanced.sample(
            noise=get_value_at_index(randomnoise_68, 0),
            guider=get_value_at_index(cfgguider_73, 0),
            sampler=get_value_at_index(ksamplerselect_72, 0),
            sigmas=get_value_at_index(basicscheduler_84, 0),
            latent_image=get_value_at_index(emptysd3latentimage_69, 0),
        )

        vaedecode_79 = vaedecode.decode(
            samples=get_value_at_index(samplercustomadvanced_67, 0),
            vae=get_value_at_index(vaeloader_80, 0),
        )

        # Instead of saving to file, return the image directly
        return get_value_at_index(vaedecode_79, 0)

# Create Gradio interface
with gr.Blocks() as app:
    gr.Markdown("# Chroma Image Generator")
    
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(
                label="Prompt",
                placeholder="Enter your prompt here...",
                lines=3
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                placeholder="Enter negative prompt here...",
                value="low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors",
                lines=2
            )
            
            with gr.Row():
                width = gr.Slider(
                    minimum=512,
                    maximum=2048,
                    value=1024,
                    step=64,
                    label="Width"
                )
                height = gr.Slider(
                    minimum=512,
                    maximum=2048,
                    value=1024,
                    step=64,
                    label="Height"
                )
            
            with gr.Row():
                steps = gr.Slider(
                    minimum=1,
                    maximum=50,
                    value=26,
                    step=1,
                    label="Steps"
                )
                cfg = gr.Slider(
                    minimum=1,
                    maximum=20,
                    value=4,
                    step=0.5,
                    label="CFG Scale"
                )
                seed = gr.Number(
                    value=-1,
                    label="Seed (-1 for random)"
                )
            
            generate_btn = gr.Button("Generate")
        
        with gr.Column():
            output_image = gr.Image(label="Generated Image")
    
    generate_btn.click(
        fn=generate_image,
        inputs=[prompt, negative_prompt, width, height, steps, cfg, seed],
        outputs=[output_image]
    )

if __name__ == "__main__":
    app.launch(share=True)