Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import requests | |
from torchvision import transforms | |
model = torch.hub.load("pytorch/vision:v0.6.0", "resnet18", pretrained=True).eval() | |
response = requests.get("https://git.io/JJkYN") | |
labels = response.text.split("\n") | |
def predict(inp, *args, **kwargs): | |
inp = transforms.ToTensor()(inp).unsqueeze(0) | |
with torch.no_grad(): | |
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0) | |
confidences = {labels[i]: float(prediction[i]) for i in range(1000)} | |
return confidences | |
def calculate(*args, **kwargs) -> str: | |
output_file_path = "main_output.txt" | |
with open(output_file_path, "w") as fi: | |
fi.write(f"args: {args}\n") | |
fi.write(f"kwargs: {kwargs}\n") | |
return output_file_path | |
def run(): | |
iface = gr.Interface( | |
fn=calculate, | |
inputs=[ | |
gr.File(label="Protein PDB", file_types=[".pdb"]), | |
gr.File(label="Ligand SDF", file_types=[".sdf"]), | |
gr.Number(label="Samples Per Complex", value=4, minimum=1, maximum=100, precision=0), | |
gr.Checkbox(label="Keep Local Structures", value=True), | |
gr.Checkbox(label="Save Visualization", value=True) | |
], | |
outputs=gr.File(label="Result") | |
) | |
iface.launch(server_name="0.0.0.0", server_port=7860) | |
if __name__ == "__main__": | |
run() | |