Spaces:
Runtime error
Runtime error
Commit
·
5d94b0f
1
Parent(s):
4533120
update space
Browse files
app.py
CHANGED
@@ -62,158 +62,6 @@ class Blocks(gr.Blocks):
|
|
62 |
|
63 |
return config
|
64 |
|
65 |
-
@torch.no_grad()
|
66 |
-
def optimize_all(xm, models, initial_noise, noise_start_t, diffusion, latent_model, device, prompt, instruction, rand_seed):
|
67 |
-
state = {}
|
68 |
-
out_gen_1, out_gen_2, out_gen_3, out_gen_4, state = generate_3d_with_shap_e(xm, diffusion, latent_model, device, prompt, rand_seed, state)
|
69 |
-
edited_1, edited_2, edited_3, edited_4, state = _3d_editing(xm, models, diffusion, initial_noise, noise_start_t, device, instruction, rand_seed, state)
|
70 |
-
print(state)
|
71 |
-
return out_gen_1, out_gen_2, out_gen_3, out_gen_4, edited_1, edited_2, edited_3, edited_4
|
72 |
-
|
73 |
-
|
74 |
-
@spaces.GPU()
|
75 |
-
@torch.no_grad()
|
76 |
-
def generate_3d_with_shap_e(xm, diffusion, latent_model, device, prompt, rand_seed, state):
|
77 |
-
print("Check if I can use partial")
|
78 |
-
set_seed(rand_seed)
|
79 |
-
batch_size = 4
|
80 |
-
guidance_scale = 15.0
|
81 |
-
xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.0]).to(device)
|
82 |
-
xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1.0]).to(device)
|
83 |
-
xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max])
|
84 |
-
|
85 |
-
print("prompt: ", prompt, "rand_seed: ", rand_seed, "state:", state)
|
86 |
-
latents = sample_latents(
|
87 |
-
batch_size=batch_size,
|
88 |
-
model=latent_model,
|
89 |
-
diffusion=diffusion,
|
90 |
-
guidance_scale=guidance_scale,
|
91 |
-
model_kwargs=dict(texts=[prompt] * batch_size),
|
92 |
-
progress=True,
|
93 |
-
clip_denoised=True,
|
94 |
-
use_fp16=True,
|
95 |
-
use_karras=True,
|
96 |
-
karras_steps=64,
|
97 |
-
sigma_min=1e-3,
|
98 |
-
sigma_max=160,
|
99 |
-
s_churn=0,
|
100 |
-
)
|
101 |
-
prompt_hash = str(hashlib.sha256((prompt + '_' + str(rand_seed)).encode('utf-8')).hexdigest())
|
102 |
-
mesh_path = []
|
103 |
-
output_path = './logs'
|
104 |
-
os.makedirs(os.path.join(output_path, 'source'), exist_ok=True)
|
105 |
-
state['latent'] = []
|
106 |
-
state['prompt'] = prompt
|
107 |
-
state['rand_seed_1'] = rand_seed
|
108 |
-
for i, latent in enumerate(latents):
|
109 |
-
|
110 |
-
output_path_tmp = os.path.join(output_path, 'source', '{}_{}.obj'.format(prompt_hash, i))
|
111 |
-
t_obj = decode_latent_mesh(xm, latent).tri_mesh()
|
112 |
-
with open(output_path_tmp, 'w') as f:
|
113 |
-
t_obj.write_obj(f)
|
114 |
-
|
115 |
-
mesh = trimesh.load_mesh(output_path_tmp)
|
116 |
-
angle = np.radians(180)
|
117 |
-
axis = [0, 1, 0]
|
118 |
-
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
|
119 |
-
mesh.apply_transform(rotation_matrix)
|
120 |
-
angle = np.radians(90)
|
121 |
-
axis = [1, 0, 0]
|
122 |
-
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
|
123 |
-
mesh.apply_transform(rotation_matrix)
|
124 |
-
output_path_tmp = os.path.join(output_path, 'source', '{}_{}.obj'.format(prompt_hash, i))
|
125 |
-
mesh.export(output_path_tmp)
|
126 |
-
state['latent'].append(latent.clone().detach().cpu())
|
127 |
-
mesh_path.append(output_path_tmp)
|
128 |
-
del latents
|
129 |
-
return mesh_path[0], mesh_path[1], mesh_path[2], mesh_path[3], state
|
130 |
-
|
131 |
-
@spaces.GPU()
|
132 |
-
@torch.no_grad()
|
133 |
-
def _3d_editing(xm, models, diffusion, initial_noise, start_t, device, instruction, rand_seed, state):
|
134 |
-
set_seed(rand_seed)
|
135 |
-
mesh_path = []
|
136 |
-
prompt = state['prompt']
|
137 |
-
rand_seed_1 = state['rand_seed_1']
|
138 |
-
print("prompt: ", prompt, "rand_seed: ", rand_seed, "instruction:", instruction, "state:", state)
|
139 |
-
prompt_hash = str(hashlib.sha256((prompt + '_' + str(rand_seed_1) + '_' + instruction + '_' + str(rand_seed)).encode('utf-8')).hexdigest())
|
140 |
-
if 'santa' in instruction:
|
141 |
-
e_type = 'santa_hat'
|
142 |
-
elif 'rainbow' in instruction:
|
143 |
-
e_type = 'rainbow'
|
144 |
-
elif 'gold' in instruction:
|
145 |
-
e_type = 'golden'
|
146 |
-
elif 'lego' in instruction:
|
147 |
-
e_type = 'lego'
|
148 |
-
elif 'wooden' in instruction:
|
149 |
-
e_type = 'wooden'
|
150 |
-
elif 'cyber' in instruction:
|
151 |
-
e_type = 'cyber'
|
152 |
-
|
153 |
-
model = load_model('text300M', device=device)
|
154 |
-
with torch.no_grad():
|
155 |
-
new_proj = nn.Linear(1024 * 2, 1024, device=device, dtype=model.wrapped.input_proj.weight.dtype)
|
156 |
-
new_proj.weight = nn.Parameter(torch.zeros_like(new_proj.weight))
|
157 |
-
new_proj.weight[:, :1024].copy_(model.wrapped.input_proj.weight) #
|
158 |
-
new_proj.bias = nn.Parameter(torch.zeros_like(new_proj.bias))
|
159 |
-
new_proj.bias[:1024].copy_(model.wrapped.input_proj.bias)
|
160 |
-
model.wrapped.input_proj = new_proj
|
161 |
-
|
162 |
-
ckp = torch.load(hf_hub_download(repo_id='silentchen/Shap_Editor', subfolder='single', filename='{}.pt'.format(e_type)), map_location='cpu')
|
163 |
-
model.load_state_dict(ckp['model'])
|
164 |
-
|
165 |
-
noise_initial = initial_noise[e_type].to(device)
|
166 |
-
noise_start_t = start_t[e_type]
|
167 |
-
general_save_path = './logs/edited'
|
168 |
-
os.makedirs(general_save_path, exist_ok=True)
|
169 |
-
for i, latent in enumerate(state['latent']):
|
170 |
-
latent = latent.to(device)
|
171 |
-
text_embeddings_clip = model.cached_model_kwargs(1, dict(texts=[instruction]))
|
172 |
-
print("shape of latent: ", latent.clone().unsqueeze(0).shape, "instruction: ", instruction)
|
173 |
-
ref_latent = latent.clone().unsqueeze(0)
|
174 |
-
t_1 = torch.randint(noise_start_t, noise_start_t + 1, (1,), device=device).long()
|
175 |
-
|
176 |
-
noise_input = diffusion.q_sample(ref_latent, t_1, noise=noise_initial)
|
177 |
-
out_1 = diffusion.p_mean_variance(model, noise_input, t_1, clip_denoised=True,
|
178 |
-
model_kwargs=text_embeddings_clip,
|
179 |
-
condition_latents=ref_latent)
|
180 |
-
|
181 |
-
updated_latents = out_1['pred_xstart']
|
182 |
-
|
183 |
-
if 'santa' in instruction:
|
184 |
-
xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.25]).to(device)
|
185 |
-
xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1]).to(device)
|
186 |
-
xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max])
|
187 |
-
|
188 |
-
else:
|
189 |
-
xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.0]).to(device)
|
190 |
-
xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1.0]).to(device)
|
191 |
-
xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max])
|
192 |
-
|
193 |
-
for latent_idx, updated_latent in enumerate(updated_latents):
|
194 |
-
output_path = os.path.join(general_save_path, '{}_{}.obj'.format(prompt_hash, i))
|
195 |
-
|
196 |
-
t = decode_latent_mesh(xm, updated_latent).tri_mesh()
|
197 |
-
with open(output_path, 'w') as f:
|
198 |
-
t.write_obj(f)
|
199 |
-
mesh = trimesh.load_mesh(output_path)
|
200 |
-
|
201 |
-
angle = np.radians(180)
|
202 |
-
axis = [0, 1, 0]
|
203 |
-
|
204 |
-
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
|
205 |
-
mesh.apply_transform(rotation_matrix)
|
206 |
-
angle = np.radians(90)
|
207 |
-
axis = [1, 0, 0]
|
208 |
-
|
209 |
-
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
|
210 |
-
mesh.apply_transform(rotation_matrix)
|
211 |
-
|
212 |
-
output_path = os.path.join(general_save_path, '{}_{}.obj'.format(prompt_hash, i))
|
213 |
-
mesh.export(output_path)
|
214 |
-
mesh_path.append(output_path)
|
215 |
-
return mesh_path[0], mesh_path[1], mesh_path[2], mesh_path[3], state
|
216 |
-
|
217 |
def main():
|
218 |
|
219 |
css = """
|
@@ -320,6 +168,161 @@ def main():
|
|
320 |
initial_noise[editing_type] = noise_initial
|
321 |
noise_start_t[editing_type] = ckp['t_start']
|
322 |
models[editing_type] = tmp_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
del models
|
325 |
models = None
|
@@ -388,13 +391,13 @@ def main():
|
|
388 |
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random seed")
|
389 |
|
390 |
gen_btn.click(
|
391 |
-
fn=
|
392 |
inputs=[prompt, rand_seed, state],
|
393 |
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
|
394 |
queue=False)
|
395 |
|
396 |
apply_btn.click(
|
397 |
-
fn=
|
398 |
inputs=[
|
399 |
editing_choice[0], rand_seed, state
|
400 |
],
|
@@ -416,7 +419,7 @@ def main():
|
|
416 |
],
|
417 |
inputs=[prompt, editing_choice[0], rand_seed],
|
418 |
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, edited_1, edited_2, edited_3, edited_4],
|
419 |
-
fn=
|
420 |
cache_examples=True,
|
421 |
)
|
422 |
|
|
|
62 |
|
63 |
return config
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
def main():
|
66 |
|
67 |
css = """
|
|
|
168 |
initial_noise[editing_type] = noise_initial
|
169 |
noise_start_t[editing_type] = ckp['t_start']
|
170 |
models[editing_type] = tmp_model
|
171 |
+
@torch.no_grad()
|
172 |
+
def optimize_all(prompt, instruction,
|
173 |
+
rand_seed):
|
174 |
+
print("Optimizing all")
|
175 |
+
state = {}
|
176 |
+
out_gen_1, out_gen_2, out_gen_3, out_gen_4, state = generate_3d_with_shap_e(prompt, rand_seed, state)
|
177 |
+
edited_1, edited_2, edited_3, edited_4, state = _3d_editing(instruction, rand_seed, state)
|
178 |
+
print(state)
|
179 |
+
return out_gen_1, out_gen_2, out_gen_3, out_gen_4, edited_1, edited_2, edited_3, edited_4
|
180 |
+
|
181 |
+
@spaces.GPU()
|
182 |
+
@torch.no_grad()
|
183 |
+
def generate_3d_with_shap_e(prompt, rand_seed, state):
|
184 |
+
print("Check if I can use partial")
|
185 |
+
set_seed(rand_seed)
|
186 |
+
batch_size = 4
|
187 |
+
guidance_scale = 15.0
|
188 |
+
xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.0]).to(device)
|
189 |
+
xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1.0]).to(device)
|
190 |
+
xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max])
|
191 |
+
|
192 |
+
print("prompt: ", prompt, "rand_seed: ", rand_seed, "state:", state)
|
193 |
+
latents = sample_latents(
|
194 |
+
batch_size=batch_size,
|
195 |
+
model=latent_model,
|
196 |
+
diffusion=diffusion,
|
197 |
+
guidance_scale=guidance_scale,
|
198 |
+
model_kwargs=dict(texts=[prompt] * batch_size),
|
199 |
+
progress=True,
|
200 |
+
clip_denoised=True,
|
201 |
+
use_fp16=True,
|
202 |
+
use_karras=True,
|
203 |
+
karras_steps=64,
|
204 |
+
sigma_min=1e-3,
|
205 |
+
sigma_max=160,
|
206 |
+
s_churn=0,
|
207 |
+
)
|
208 |
+
prompt_hash = str(hashlib.sha256((prompt + '_' + str(rand_seed)).encode('utf-8')).hexdigest())
|
209 |
+
mesh_path = []
|
210 |
+
output_path = './logs'
|
211 |
+
os.makedirs(os.path.join(output_path, 'source'), exist_ok=True)
|
212 |
+
state['latent'] = []
|
213 |
+
state['prompt'] = prompt
|
214 |
+
state['rand_seed_1'] = rand_seed
|
215 |
+
for i, latent in enumerate(latents):
|
216 |
+
output_path_tmp = os.path.join(output_path, 'source', '{}_{}.obj'.format(prompt_hash, i))
|
217 |
+
t_obj = decode_latent_mesh(xm, latent).tri_mesh()
|
218 |
+
with open(output_path_tmp, 'w') as f:
|
219 |
+
t_obj.write_obj(f)
|
220 |
+
|
221 |
+
mesh = trimesh.load_mesh(output_path_tmp)
|
222 |
+
angle = np.radians(180)
|
223 |
+
axis = [0, 1, 0]
|
224 |
+
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
|
225 |
+
mesh.apply_transform(rotation_matrix)
|
226 |
+
angle = np.radians(90)
|
227 |
+
axis = [1, 0, 0]
|
228 |
+
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
|
229 |
+
mesh.apply_transform(rotation_matrix)
|
230 |
+
output_path_tmp = os.path.join(output_path, 'source', '{}_{}.obj'.format(prompt_hash, i))
|
231 |
+
mesh.export(output_path_tmp)
|
232 |
+
state['latent'].append(latent.clone().detach().cpu())
|
233 |
+
mesh_path.append(output_path_tmp)
|
234 |
+
del latents
|
235 |
+
return mesh_path[0], mesh_path[1], mesh_path[2], mesh_path[3], state
|
236 |
+
|
237 |
+
@spaces.GPU()
|
238 |
+
@torch.no_grad()
|
239 |
+
def _3d_editing(instruction, rand_seed, state):
|
240 |
+
set_seed(rand_seed)
|
241 |
+
mesh_path = []
|
242 |
+
prompt = state['prompt']
|
243 |
+
rand_seed_1 = state['rand_seed_1']
|
244 |
+
print("prompt: ", prompt, "rand_seed: ", rand_seed, "instruction:", instruction, "state:", state)
|
245 |
+
prompt_hash = str(hashlib.sha256(
|
246 |
+
(prompt + '_' + str(rand_seed_1) + '_' + instruction + '_' + str(rand_seed)).encode('utf-8')).hexdigest())
|
247 |
+
if 'santa' in instruction:
|
248 |
+
e_type = 'santa_hat'
|
249 |
+
elif 'rainbow' in instruction:
|
250 |
+
e_type = 'rainbow'
|
251 |
+
elif 'gold' in instruction:
|
252 |
+
e_type = 'golden'
|
253 |
+
elif 'lego' in instruction:
|
254 |
+
e_type = 'lego'
|
255 |
+
elif 'wooden' in instruction:
|
256 |
+
e_type = 'wooden'
|
257 |
+
elif 'cyber' in instruction:
|
258 |
+
e_type = 'cyber'
|
259 |
+
|
260 |
+
model = load_model('text300M', device=device)
|
261 |
+
with torch.no_grad():
|
262 |
+
new_proj = nn.Linear(1024 * 2, 1024, device=device, dtype=model.wrapped.input_proj.weight.dtype)
|
263 |
+
new_proj.weight = nn.Parameter(torch.zeros_like(new_proj.weight))
|
264 |
+
new_proj.weight[:, :1024].copy_(model.wrapped.input_proj.weight) #
|
265 |
+
new_proj.bias = nn.Parameter(torch.zeros_like(new_proj.bias))
|
266 |
+
new_proj.bias[:1024].copy_(model.wrapped.input_proj.bias)
|
267 |
+
model.wrapped.input_proj = new_proj
|
268 |
+
|
269 |
+
ckp = torch.load(
|
270 |
+
hf_hub_download(repo_id='silentchen/Shap_Editor', subfolder='single', filename='{}.pt'.format(e_type)),
|
271 |
+
map_location='cpu')
|
272 |
+
model.load_state_dict(ckp['model'])
|
273 |
+
|
274 |
+
noise_initial = initial_noise[e_type].to(device)
|
275 |
+
noise_start_t = noise_start_t[e_type]
|
276 |
+
general_save_path = './logs/edited'
|
277 |
+
os.makedirs(general_save_path, exist_ok=True)
|
278 |
+
for i, latent in enumerate(state['latent']):
|
279 |
+
latent = latent.to(device)
|
280 |
+
text_embeddings_clip = model.cached_model_kwargs(1, dict(texts=[instruction]))
|
281 |
+
print("shape of latent: ", latent.clone().unsqueeze(0).shape, "instruction: ", instruction)
|
282 |
+
ref_latent = latent.clone().unsqueeze(0)
|
283 |
+
t_1 = torch.randint(noise_start_t, noise_start_t + 1, (1,), device=device).long()
|
284 |
+
|
285 |
+
noise_input = diffusion.q_sample(ref_latent, t_1, noise=noise_initial)
|
286 |
+
out_1 = diffusion.p_mean_variance(model, noise_input, t_1, clip_denoised=True,
|
287 |
+
model_kwargs=text_embeddings_clip,
|
288 |
+
condition_latents=ref_latent)
|
289 |
+
|
290 |
+
updated_latents = out_1['pred_xstart']
|
291 |
+
|
292 |
+
if 'santa' in instruction:
|
293 |
+
xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.25]).to(device)
|
294 |
+
xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1]).to(device)
|
295 |
+
xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max])
|
296 |
+
|
297 |
+
else:
|
298 |
+
xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.0]).to(device)
|
299 |
+
xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1.0]).to(device)
|
300 |
+
xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max])
|
301 |
+
|
302 |
+
for latent_idx, updated_latent in enumerate(updated_latents):
|
303 |
+
output_path = os.path.join(general_save_path, '{}_{}.obj'.format(prompt_hash, i))
|
304 |
+
|
305 |
+
t = decode_latent_mesh(xm, updated_latent).tri_mesh()
|
306 |
+
with open(output_path, 'w') as f:
|
307 |
+
t.write_obj(f)
|
308 |
+
mesh = trimesh.load_mesh(output_path)
|
309 |
+
|
310 |
+
angle = np.radians(180)
|
311 |
+
axis = [0, 1, 0]
|
312 |
+
|
313 |
+
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
|
314 |
+
mesh.apply_transform(rotation_matrix)
|
315 |
+
angle = np.radians(90)
|
316 |
+
axis = [1, 0, 0]
|
317 |
+
|
318 |
+
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
|
319 |
+
mesh.apply_transform(rotation_matrix)
|
320 |
+
|
321 |
+
output_path = os.path.join(general_save_path, '{}_{}.obj'.format(prompt_hash, i))
|
322 |
+
mesh.export(output_path)
|
323 |
+
mesh_path.append(output_path)
|
324 |
+
return mesh_path[0], mesh_path[1], mesh_path[2], mesh_path[3], state
|
325 |
+
|
326 |
|
327 |
del models
|
328 |
models = None
|
|
|
391 |
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random seed")
|
392 |
|
393 |
gen_btn.click(
|
394 |
+
fn=generate_3d_with_shap_e,
|
395 |
inputs=[prompt, rand_seed, state],
|
396 |
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
|
397 |
queue=False)
|
398 |
|
399 |
apply_btn.click(
|
400 |
+
fn=_3d_editing,
|
401 |
inputs=[
|
402 |
editing_choice[0], rand_seed, state
|
403 |
],
|
|
|
419 |
],
|
420 |
inputs=[prompt, editing_choice[0], rand_seed],
|
421 |
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, edited_1, edited_2, edited_3, edited_4],
|
422 |
+
fn=optimize_all,
|
423 |
cache_examples=True,
|
424 |
)
|
425 |
|