Spaces:
Runtime error
Runtime error
from typing import Iterator, Optional, Tuple | |
import numpy as np | |
import torch | |
from shap_e.rendering.view_data import ProjectiveCamera | |
from ._utils import cross_product | |
from .types import RayCollisions, Rays, TriMesh | |
def cast_camera( | |
camera: ProjectiveCamera, | |
mesh: TriMesh, | |
ray_batch_size: Optional[int] = None, | |
checkpoint: Optional[bool] = None, | |
) -> Iterator[RayCollisions]: | |
pixel_indices = np.arange(camera.width * camera.height) | |
image_coords = np.stack([pixel_indices % camera.width, pixel_indices // camera.width], axis=1) | |
rays = camera.camera_rays(image_coords) | |
batch_size = ray_batch_size or len(rays) | |
checkpoint = checkpoint if checkpoint is not None else batch_size < len(rays) | |
for i in range(0, len(rays), batch_size): | |
sub_rays = rays[i : i + batch_size] | |
origins = torch.from_numpy(sub_rays[:, 0]).to(mesh.vertices) | |
directions = torch.from_numpy(sub_rays[:, 1]).to(mesh.vertices) | |
yield cast_rays(Rays(origins=origins, directions=directions), mesh, checkpoint=checkpoint) | |
def cast_rays(rays: Rays, mesh: TriMesh, checkpoint: bool = False) -> RayCollisions: | |
""" | |
Cast a batch of rays onto a mesh. | |
""" | |
if checkpoint: | |
collides, ray_dists, tri_indices, barycentric, normals = RayCollisionFunction.apply( | |
rays.origins, rays.directions, mesh.faces, mesh.vertices | |
) | |
return RayCollisions( | |
collides=collides, | |
ray_dists=ray_dists, | |
tri_indices=tri_indices, | |
barycentric=barycentric, | |
normals=normals, | |
) | |
# https://github.com/unixpickle/vae-textures/blob/2968549ddd4a3487f9437d4db00793324453cd59/vae_textures/render.py#L98 | |
normals = mesh.normals() # [N x 3] | |
directions = rays.directions # [M x 3] | |
collides = (directions @ normals.T).abs() > 1e-8 # [N x M] | |
tris = mesh.vertices[mesh.faces] # [N x 3 x 3] | |
v1 = tris[:, 1] - tris[:, 0] | |
v2 = tris[:, 2] - tris[:, 0] | |
cross1 = cross_product(directions[:, None], v2[None]) # [N x M x 3] | |
det = torch.sum(cross1 * v1[None], dim=-1) # [N x M] | |
collides = torch.logical_and(collides, det.abs() > 1e-8) | |
invDet = 1 / det # [N x M] | |
o = rays.origins[:, None] - tris[None, :, 0] # [N x M x 3] | |
bary1 = invDet * torch.sum(o * cross1, dim=-1) # [N x M] | |
collides = torch.logical_and(collides, torch.logical_and(bary1 >= 0, bary1 <= 1)) | |
cross2 = cross_product(o, v1[None]) # [N x M x 3] | |
bary2 = invDet * torch.sum(directions[:, None] * cross2, dim=-1) # [N x M] | |
collides = torch.logical_and(collides, torch.logical_and(bary2 >= 0, bary2 <= 1)) | |
bary0 = 1 - (bary1 + bary2) | |
# Make sure this is in the positive part of the ray. | |
scale = invDet * torch.sum(v2 * cross2, dim=-1) | |
collides = torch.logical_and(collides, scale > 0) | |
# Select the nearest collision | |
ray_dists, tri_indices = torch.min( | |
torch.where(collides, scale, torch.tensor(torch.inf).to(scale)), dim=-1 | |
) # [N] | |
nearest_bary = torch.stack( | |
[ | |
bary0[range(len(tri_indices)), tri_indices], | |
bary1[range(len(tri_indices)), tri_indices], | |
bary2[range(len(tri_indices)), tri_indices], | |
], | |
dim=-1, | |
) | |
return RayCollisions( | |
collides=torch.any(collides, dim=-1), | |
ray_dists=ray_dists, | |
tri_indices=tri_indices, | |
barycentric=nearest_bary, | |
normals=normals[tri_indices], | |
) | |
class RayCollisionFunction(torch.autograd.Function): | |
def forward( | |
ctx, origins, directions, faces, vertices | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
ctx.save_for_backward(origins, directions, faces, vertices) | |
with torch.no_grad(): | |
res = cast_rays( | |
Rays(origins=origins, directions=directions), | |
TriMesh(faces=faces, vertices=vertices), | |
checkpoint=False, | |
) | |
return (res.collides, res.ray_dists, res.tri_indices, res.barycentric, res.normals) | |
def backward( | |
ctx, _collides_grad, ray_dists_grad, _tri_indices_grad, barycentric_grad, normals_grad | |
): | |
origins, directions, faces, vertices = ctx.input_tensors | |
origins = origins.detach().requires_grad_(True) | |
directions = directions.detach().requires_grad_(True) | |
vertices = vertices.detach().requires_grad_(True) | |
with torch.enable_grad(): | |
outputs = cast_rays( | |
Rays(origins=origins, directions=directions), | |
TriMesh(faces=faces, vertices=vertices), | |
checkpoint=False, | |
) | |
origins_grad, directions_grad, vertices_grad = torch.autograd.grad( | |
(outputs.ray_dists, outputs.barycentric, outputs.normals), | |
(origins, directions, vertices), | |
(ray_dists_grad, barycentric_grad, normals_grad), | |
) | |
return (origins_grad, directions_grad, None, vertices_grad) | |