Spaces:
Runtime error
Runtime error
import itertools | |
import json | |
import zipfile | |
from typing import BinaryIO, List, Tuple | |
import numpy as np | |
from PIL import Image | |
from shap_e.rendering.view_data import Camera, ProjectiveCamera, ViewData | |
class BlenderViewData(ViewData): | |
""" | |
Interact with a dataset zipfile exported by view_data.py. | |
""" | |
def __init__(self, f_obj: BinaryIO): | |
self.zipfile = zipfile.ZipFile(f_obj, mode="r") | |
self.infos = [] | |
with self.zipfile.open("info.json", "r") as f: | |
self.info = json.load(f) | |
self.channels = list(self.info.get("channels", "RGBAD")) | |
assert set("RGBA").issubset( | |
set(self.channels) | |
), "The blender output should at least have RGBA images." | |
names = set(x.filename for x in self.zipfile.infolist()) | |
for i in itertools.count(): | |
name = f"{i:05}.json" | |
if name not in names: | |
break | |
with self.zipfile.open(name, "r") as f: | |
self.infos.append(json.load(f)) | |
def num_views(self) -> int: | |
return len(self.infos) | |
def channel_names(self) -> List[str]: | |
return list(self.channels) | |
def load_view(self, index: int, channels: List[str]) -> Tuple[Camera, np.ndarray]: | |
for ch in channels: | |
if ch not in self.channel_names: | |
raise ValueError(f"unsupported channel: {ch}") | |
# Gather (a superset of) the requested channels. | |
channel_map = {} | |
if any(x in channels for x in "RGBA"): | |
with self.zipfile.open(f"{index:05}.png", "r") as f: | |
rgba = np.array(Image.open(f)).astype(np.float32) / 255.0 | |
channel_map.update(zip("RGBA", rgba.transpose([2, 0, 1]))) | |
if "D" in channels: | |
with self.zipfile.open(f"{index:05}_depth.png", "r") as f: | |
# Decode a 16-bit fixed-point number. | |
fp = np.array(Image.open(f)) | |
inf_dist = fp == 0xFFFF | |
channel_map["D"] = np.where( | |
inf_dist, | |
np.inf, | |
self.infos[index]["max_depth"] * (fp.astype(np.float32) / 65536), | |
) | |
if "MatAlpha" in channels: | |
with self.zipfile.open(f"{index:05}_MatAlpha.png", "r") as f: | |
channel_map["MatAlpha"] = np.array(Image.open(f)).astype(np.float32) / 65536 | |
# The order of channels is user-specified. | |
combined = np.stack([channel_map[k] for k in channels], axis=-1) | |
h, w, _ = combined.shape | |
return self.camera(index, w, h), combined | |
def camera(self, index: int, width: int, height: int) -> ProjectiveCamera: | |
info = self.infos[index] | |
return ProjectiveCamera( | |
origin=np.array(info["origin"], dtype=np.float32), | |
x=np.array(info["x"], dtype=np.float32), | |
y=np.array(info["y"], dtype=np.float32), | |
z=np.array(info["z"], dtype=np.float32), | |
width=width, | |
height=height, | |
x_fov=info["x_fov"], | |
y_fov=info["y_fov"], | |
) | |