Spaces:
Runtime error
Runtime error
from typing import Iterable, Union | |
import numpy as np | |
import torch | |
ArrayType = Union[np.ndarray, Iterable[int], torch.Tensor] | |
def to_torch(arr: ArrayType, dtype=torch.float): | |
if isinstance(arr, torch.Tensor): | |
return arr | |
return torch.from_numpy(np.array(arr)).to(dtype) | |
def sample_pmf(pmf: torch.Tensor, n_samples: int) -> torch.Tensor: | |
""" | |
Sample from the given discrete probability distribution with replacement. | |
The i-th bin is assumed to have mass pmf[i]. | |
:param pmf: [batch_size, *shape, n_samples, 1] where (pmf.sum(dim=-2) == 1).all() | |
:param n_samples: number of samples | |
:return: indices sampled with replacement | |
""" | |
*shape, support_size, last_dim = pmf.shape | |
assert last_dim == 1 | |
cdf = torch.cumsum(pmf.view(-1, support_size), dim=1) | |
inds = torch.searchsorted(cdf, torch.rand(cdf.shape[0], n_samples, device=cdf.device)) | |
return inds.view(*shape, n_samples, 1).clamp(0, support_size - 1) | |
def safe_divide(a, b, epsilon=1e-6): | |
return a / torch.where(b < 0, b - epsilon, b + epsilon) | |