Spaces:
Runtime error
Runtime error
import math | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
from shap_e.models.nn.checkpoint import checkpoint | |
from .transformer import MLP, Transformer, init_linear | |
from .util import timestep_embedding | |
class MultiheadCrossAttention(nn.Module): | |
def __init__( | |
self, | |
*, | |
device: torch.device, | |
dtype: torch.dtype, | |
n_ctx: int, | |
n_data: int, | |
width: int, | |
heads: int, | |
init_scale: float, | |
data_width: Optional[int] = None, | |
): | |
super().__init__() | |
self.n_ctx = n_ctx | |
self.n_data = n_data | |
self.width = width | |
self.heads = heads | |
self.data_width = width if data_width is None else data_width | |
self.c_q = nn.Linear(width, width, device=device, dtype=dtype) | |
self.c_kv = nn.Linear(self.data_width, width * 2, device=device, dtype=dtype) | |
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype) | |
self.attention = QKVMultiheadCrossAttention( | |
device=device, dtype=dtype, heads=heads, n_ctx=n_ctx, n_data=n_data | |
) | |
init_linear(self.c_q, init_scale) | |
init_linear(self.c_kv, init_scale) | |
init_linear(self.c_proj, init_scale) | |
def forward(self, x, data): | |
x = self.c_q(x) | |
data = self.c_kv(data) | |
x = checkpoint(self.attention, (x, data), (), True) | |
x = self.c_proj(x) | |
return x | |
class QKVMultiheadCrossAttention(nn.Module): | |
def __init__( | |
self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int, n_data: int | |
): | |
super().__init__() | |
self.device = device | |
self.dtype = dtype | |
self.heads = heads | |
self.n_ctx = n_ctx | |
self.n_data = n_data | |
def forward(self, q, kv): | |
_, n_ctx, _ = q.shape | |
bs, n_data, width = kv.shape | |
attn_ch = width // self.heads // 2 | |
scale = 1 / math.sqrt(math.sqrt(attn_ch)) | |
q = q.view(bs, n_ctx, self.heads, -1) | |
kv = kv.view(bs, n_data, self.heads, -1) | |
k, v = torch.split(kv, attn_ch, dim=-1) | |
weight = torch.einsum( | |
"bthc,bshc->bhts", q * scale, k * scale | |
) # More stable with f16 than dividing afterwards | |
wdtype = weight.dtype | |
weight = torch.softmax(weight.float(), dim=-1).type(wdtype) | |
return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1) | |
class ResidualCrossAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
*, | |
device: torch.device, | |
dtype: torch.dtype, | |
n_ctx: int, | |
n_data: int, | |
width: int, | |
heads: int, | |
data_width: Optional[int] = None, | |
init_scale: float = 1.0, | |
): | |
super().__init__() | |
if data_width is None: | |
data_width = width | |
self.attn = MultiheadCrossAttention( | |
device=device, | |
dtype=dtype, | |
n_ctx=n_ctx, | |
n_data=n_data, | |
width=width, | |
heads=heads, | |
data_width=data_width, | |
init_scale=init_scale, | |
) | |
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype) | |
self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype) | |
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale) | |
self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype) | |
def forward(self, x: torch.Tensor, data: torch.Tensor): | |
x = x + self.attn(self.ln_1(x), self.ln_2(data)) | |
x = x + self.mlp(self.ln_3(x)) | |
return x | |
class SimplePerceiver(nn.Module): | |
""" | |
Only does cross attention | |
""" | |
def __init__( | |
self, | |
*, | |
device: torch.device, | |
dtype: torch.dtype, | |
n_ctx: int, | |
n_data: int, | |
width: int, | |
layers: int, | |
heads: int, | |
init_scale: float = 0.25, | |
data_width: Optional[int] = None, | |
): | |
super().__init__() | |
self.n_ctx = n_ctx | |
self.width = width | |
self.layers = layers | |
init_scale = init_scale * math.sqrt(1.0 / width) | |
self.resblocks = nn.ModuleList( | |
[ | |
ResidualCrossAttentionBlock( | |
device=device, | |
dtype=dtype, | |
n_ctx=n_ctx, | |
n_data=n_data, | |
width=width, | |
heads=heads, | |
init_scale=init_scale, | |
data_width=data_width, | |
) | |
for _ in range(layers) | |
] | |
) | |
def forward(self, x: torch.Tensor, data: torch.Tensor): | |
for block in self.resblocks: | |
x = block(x, data) | |
return x | |
class PointDiffusionPerceiver(nn.Module): | |
def __init__( | |
self, | |
*, | |
device: torch.device, | |
dtype: torch.dtype, | |
input_channels: int = 3, | |
output_channels: int = 3, | |
n_ctx: int = 1024, | |
n_latent: int = 128, | |
width: int = 512, | |
encoder_layers: int = 12, | |
latent_layers: int = 12, | |
decoder_layers: int = 12, | |
heads: int = 8, | |
init_scale: float = 0.25, | |
): | |
super().__init__() | |
self.time_embed = MLP( | |
device=device, dtype=dtype, width=width, init_scale=init_scale * math.sqrt(1.0 / width) | |
) | |
self.latent_embed = MLP( | |
device=device, dtype=dtype, width=width, init_scale=init_scale * math.sqrt(1.0 / width) | |
) | |
self.n_latent = n_latent | |
self.ln_pre = nn.LayerNorm(width, device=device, dtype=dtype) | |
self.encoder = SimplePerceiver( | |
device=device, | |
dtype=dtype, | |
n_ctx=n_latent, | |
n_data=n_ctx, | |
width=width, | |
layers=encoder_layers, | |
heads=heads, | |
init_scale=init_scale, | |
) | |
self.processor = Transformer( | |
device=device, | |
dtype=dtype, | |
n_ctx=n_latent, | |
width=width, | |
layers=latent_layers, | |
heads=heads, | |
init_scale=init_scale, | |
) | |
self.decoder = SimplePerceiver( | |
device=device, | |
dtype=dtype, | |
n_ctx=n_ctx, | |
n_data=n_latent, | |
width=width, | |
layers=decoder_layers, | |
heads=heads, | |
init_scale=init_scale, | |
) | |
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype) | |
self.input_proj = nn.Linear(input_channels, width, device=device, dtype=dtype) | |
self.output_proj = nn.Linear(width, output_channels, device=device, dtype=dtype) | |
with torch.no_grad(): | |
self.output_proj.weight.zero_() | |
self.output_proj.bias.zero_() | |
def forward(self, x: torch.Tensor, t: torch.Tensor): | |
""" | |
:param x: an [N x C x T] tensor. | |
:param t: an [N] tensor. | |
:return: an [N x C' x T] tensor. | |
""" | |
assert x.shape[-1] == self.decoder.n_ctx | |
t_embed = self.time_embed(timestep_embedding(t, self.encoder.width)) | |
data = self.input_proj(x.permute(0, 2, 1)) + t_embed[:, None] | |
data = self.ln_pre(data) | |
l = torch.arange(self.n_latent).to(x.device) | |
h = self.latent_embed(timestep_embedding(l, self.decoder.width)) | |
h = h.unsqueeze(0).repeat(x.shape[0], 1, 1) | |
h = self.encoder(h, data) | |
h = self.processor(h) | |
h = self.decoder(data, h) | |
h = self.ln_post(h) | |
h = self.output_proj(h) | |
return h.permute(0, 2, 1) | |