Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import numpy as np | |
from functools import partial | |
from typing import Optional | |
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config | |
from shap_e.diffusion.sample import sample_latents | |
from shap_e.models.download import load_model, load_config | |
from shap_e.util.notebooks import create_pan_cameras, decode_latent_mesh | |
import trimesh | |
import torch.nn as nn | |
import os | |
import random | |
import warnings | |
from huggingface_hub import hf_hub_download | |
import hashlib | |
import sys | |
sys.tracebacklimit = 0 | |
def set_seed(seed=1024): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
torch.backends.cudnn.deterministic = True | |
def freeze_params(params): | |
for param in params: | |
param.requires_grad = False | |
class Blocks(gr.Blocks): | |
def __init__( | |
self, | |
theme: str = "default", | |
analytics_enabled: Optional[bool] = None, | |
mode: str = "blocks", | |
title: str = "Gradio", | |
css: Optional[str] = None, | |
**kwargs, | |
): | |
self.extra_configs = { | |
'thumbnail': kwargs.pop('thumbnail', ''), | |
'url': kwargs.pop('url', 'https://gradio.app/'), | |
'creator': kwargs.pop('creator', '@teamGradio'), | |
} | |
super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs) | |
warnings.filterwarnings("ignore") | |
def get_config_file(self): | |
config = super(Blocks, self).get_config_file() | |
for k, v in self.extra_configs.items(): | |
config[k] = v | |
return config | |
def optimize_all(xm, models, initial_noise, noise_start_t, diffusion, latent_model, device, prompt, instruction, rand_seed): | |
state = {} | |
out_gen_1, out_gen_2, out_gen_3, out_gen_4, state = generate_3d_with_shap_e(xm, diffusion, latent_model, device, prompt, rand_seed, state) | |
edited_1, edited_2, edited_3, edited_4, state = _3d_editing(xm, models, diffusion, initial_noise, noise_start_t, device, instruction, rand_seed, state) | |
print(state) | |
return out_gen_1, out_gen_2, out_gen_3, out_gen_4, edited_1, edited_2, edited_3, edited_4 | |
def generate_3d_with_shap_e(xm, diffusion, latent_model, device, prompt, rand_seed, state): | |
set_seed(rand_seed) | |
batch_size = 4 | |
guidance_scale = 15.0 | |
xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.0]).to(device) | |
xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1.0]).to(device) | |
xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max]) | |
print("prompt: ", prompt, "rand_seed: ", rand_seed, "state:", state) | |
latents = sample_latents( | |
batch_size=batch_size, | |
model=latent_model, | |
diffusion=diffusion, | |
guidance_scale=guidance_scale, | |
model_kwargs=dict(texts=[prompt] * batch_size), | |
progress=True, | |
clip_denoised=True, | |
use_fp16=True, | |
use_karras=True, | |
karras_steps=64, | |
sigma_min=1e-3, | |
sigma_max=160, | |
s_churn=0, | |
) | |
prompt_hash = str(hashlib.sha256((prompt + '_' + str(rand_seed)).encode('utf-8')).hexdigest()) | |
mesh_path = [] | |
output_path = './logs' | |
os.makedirs(os.path.join(output_path, 'source'), exist_ok=True) | |
state['latent'] = [] | |
state['prompt'] = prompt | |
state['rand_seed_1'] = rand_seed | |
for i, latent in enumerate(latents): | |
output_path_tmp = os.path.join(output_path, 'source', '{}_{}.obj'.format(prompt_hash, i)) | |
t_obj = decode_latent_mesh(xm, latent).tri_mesh() | |
with open(output_path_tmp, 'w') as f: | |
t_obj.write_obj(f) | |
mesh = trimesh.load_mesh(output_path_tmp) | |
angle = np.radians(180) | |
axis = [0, 1, 0] | |
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis) | |
mesh.apply_transform(rotation_matrix) | |
angle = np.radians(90) | |
axis = [1, 0, 0] | |
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis) | |
mesh.apply_transform(rotation_matrix) | |
output_path_tmp = os.path.join(output_path, 'source', '{}_{}.obj'.format(prompt_hash, i)) | |
mesh.export(output_path_tmp) | |
state['latent'].append(latent.clone().detach()) | |
mesh_path.append(output_path_tmp) | |
return mesh_path[0], mesh_path[1], mesh_path[2], mesh_path[3], state | |
def _3d_editing(xm, models, diffusion, initial_noise, start_t, device, instruction, rand_seed, state): | |
set_seed(rand_seed) | |
mesh_path = [] | |
prompt = state['prompt'] | |
rand_seed_1 = state['rand_seed_1'] | |
print("prompt: ", prompt, "rand_seed: ", rand_seed, "instruction:", instruction, "state:", state) | |
prompt_hash = str(hashlib.sha256((prompt + '_' + str(rand_seed_1) + '_' + instruction + '_' + str(rand_seed)).encode('utf-8')).hexdigest()) | |
if 'santa' in instruction: | |
e_type = 'santa_hat' | |
elif 'rainbow' in instruction: | |
e_type = 'rainbow' | |
elif 'gold' in instruction: | |
e_type = 'golden' | |
elif 'lego' in instruction: | |
e_type = 'lego' | |
elif 'wooden' in instruction: | |
e_type = 'wooden' | |
elif 'cyber' in instruction: | |
e_type = 'cyber' | |
# import pdb; pdb.set_trace() | |
model = models[e_type].to(device) | |
noise_initial = initial_noise[e_type].to(device) | |
noise_start_t = start_t[e_type] | |
general_save_path = './logs/edited' | |
os.makedirs(general_save_path, exist_ok=True) | |
for i, latent in enumerate(state['latent']): | |
latent = latent.to(device) | |
text_embeddings_clip = model.cached_model_kwargs(1, dict(texts=[instruction])) | |
print("shape of latent: ", latent.clone().unsqueeze(0).shape, "instruction: ", instruction) | |
ref_latent = latent.clone().unsqueeze(0) | |
t_1 = torch.randint(noise_start_t, noise_start_t + 1, (1,), device=device).long() | |
noise_input = diffusion.q_sample(ref_latent, t_1, noise=noise_initial) | |
out_1 = diffusion.p_mean_variance(model, noise_input, t_1, clip_denoised=True, | |
model_kwargs=text_embeddings_clip, | |
condition_latents=ref_latent) | |
updated_latents = out_1['pred_xstart'] | |
if 'santa' in instruction: | |
xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.25]).to(device) | |
xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1]).to(device) | |
xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max]) | |
else: | |
xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.0]).to(device) | |
xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1.0]).to(device) | |
xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max]) | |
for latent_idx, updated_latent in enumerate(updated_latents): | |
output_path = os.path.join(general_save_path, '{}_{}.obj'.format(prompt_hash, i)) | |
t = decode_latent_mesh(xm, updated_latent).tri_mesh() | |
with open(output_path, 'w') as f: | |
t.write_obj(f) | |
mesh = trimesh.load_mesh(output_path) | |
angle = np.radians(180) | |
axis = [0, 1, 0] | |
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis) | |
mesh.apply_transform(rotation_matrix) | |
angle = np.radians(90) | |
axis = [1, 0, 0] | |
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis) | |
mesh.apply_transform(rotation_matrix) | |
output_path = os.path.join(general_save_path, '{}_{}.obj'.format(prompt_hash, i)) | |
mesh.export(output_path) | |
mesh_path.append(output_path) | |
return mesh_path[0], mesh_path[1], mesh_path[2], mesh_path[3], state | |
def main(): | |
css = """ | |
#img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img | |
{ | |
height: var(--height) !important; | |
max-height: var(--height) !important; | |
min-height: var(--height) !important; | |
} | |
#paper-info a { | |
color:#008AD7; | |
text-decoration: none; | |
} | |
#paper-info a:hover { | |
cursor: pointer; | |
text-decoration: none; | |
} | |
.tooltip { | |
color: #555; | |
position: relative; | |
display: inline-block; | |
cursor: pointer; | |
} | |
.tooltip .tooltiptext { | |
visibility: hidden; | |
width: 400px; | |
background-color: #555; | |
color: #fff; | |
text-align: center; | |
padding: 5px; | |
border-radius: 5px; | |
position: absolute; | |
z-index: 1; /* Set z-index to 1 */ | |
left: 10px; | |
top: 100%; | |
opacity: 0; | |
transition: opacity 0.3s; | |
} | |
.tooltip:hover .tooltiptext { | |
visibility: visible; | |
opacity: 1; | |
z-index: 9999; /* Set a high z-index value when hovering */ | |
} | |
""" | |
rescale_js = """ | |
function(x) { | |
const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app'); | |
let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0; | |
const image_width = root.querySelector('#img2img_image').clientWidth; | |
const target_height = parseInt(image_width * image_scale); | |
document.body.style.setProperty('--height', `${target_height}px`); | |
root.querySelectorAll('button.justify-center.rounded')[0].style.display='none'; | |
root.querySelectorAll('button.justify-center.rounded')[1].style.display='none'; | |
return x; | |
} | |
""" | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
latent_model = load_model('text300M', device=device) | |
xm = load_model('transmitter', device=device) | |
diffusion = diffusion_from_config(load_config('diffusion')) | |
freeze_params(xm.parameters()) | |
models = dict() | |
initial_noise = dict() | |
noise_start_t = dict() | |
editing_types = ['rainbow', 'santa_hat', 'lego', 'golden', 'wooden', 'cyber'] | |
for editing_type in editing_types: | |
tmp_model = load_model('text300M', device=device) | |
with torch.no_grad(): | |
new_proj = nn.Linear(1024 * 2, 1024, device=device, dtype=tmp_model.wrapped.input_proj.weight.dtype) | |
new_proj.weight = nn.Parameter(torch.zeros_like(new_proj.weight)) | |
new_proj.weight[:, :1024].copy_(tmp_model.wrapped.input_proj.weight) # | |
new_proj.bias = nn.Parameter(torch.zeros_like(new_proj.bias)) | |
new_proj.bias[:1024].copy_(tmp_model.wrapped.input_proj.bias) | |
tmp_model.wrapped.input_proj = new_proj | |
ckp = torch.load(hf_hub_download(repo_id='silentchen/Shap_Editor', subfolder='single', filename='{}.pt'.format(editing_type)), map_location='cpu') | |
tmp_model.load_state_dict(ckp['model']) | |
noise_initial = ckp['initial_noise']['noise'].to(device) | |
initial_noise[editing_type] = noise_initial | |
noise_start_t[editing_type] = ckp['t_start'] | |
models[editing_type] = tmp_model | |
with Blocks( | |
css=css, | |
analytics_enabled=False, | |
title="SHAPE-EDITOR demo", | |
) as demo: | |
description = """<p style="text-align: center; font-weight: bold;"> | |
<span style="font-size: 28px"> <span style="font-size: 140%">S</span>HAP-<span style="font-size: 140%">E</span>DITOR: Instruction-guided <br> Latent 3D Editing in Seconds</span> | |
<br> | |
<span style="font-size: 18px" id="paper-info"> | |
[<a href="https://silent-chen.github.io/Shap-Editor/" target="_blank">Project Page</a>] | |
[<a href="http://arxiv.org/abs/2312.09246" target="_blank">Paper</a>] | |
[<a href="https://github.com/silent-chen/Shap-Editor" target="_blank">GitHub</a>] | |
</span> | |
</p> | |
""" | |
state = gr.State({}) | |
gr.HTML(description) | |
with gr.Column(): | |
with gr.Column(): | |
gr.HTML('<span style="font-size: 20px; font-weight: bold">Step 1: generate original 3D objects using Shap-E.</span>') | |
prompt = gr.Textbox( | |
label="Text prompt for initial 3D generation", lines=1 | |
) | |
gen_btn = gr.Button(value='Generate', scale=1) | |
with gr.Column(): | |
gr.HTML('<span style="font-size: 20px; font-weight: bold">Generated 3D objects</span>') | |
with gr.Row(): | |
out_gen_1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 1 (step 1)") | |
out_gen_2 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 2 (step 1)") | |
out_gen_3 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 3 (step 1)") | |
out_gen_4 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 4 (step 1)") | |
with gr.Column(scale=1): | |
gr.HTML('<span style="font-size: 20px; font-weight: bold">Step 2: apply 3D editing with S</span>HAP-<span style="font-size: 140%">E</span>DITOR.</span>') | |
editing_choice = gr.Dropdown( | |
["Add a santa hat to it", "Make it look like made of gold", "Make the color of it look like rainbow", "Make it in cyberpunk style", "Make it wooden", "Make it look like make of lego"], value='Add a santa hat to it', multiselect=False, label="Editing effects", info="Select specific editing you want to apply!" | |
), | |
apply_btn = gr.Button(value='Editing', scale=1) | |
with gr.Column(scale=3): | |
gr.HTML('<span style="font-size: 20px; font-weight: bold">Edited 3D objects</span>') | |
with gr.Row(): | |
edited_1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 1 (step 2)") | |
edited_2 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 2 (step 2)") | |
edited_3 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 3 (step 2)") | |
edited_4 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 4 (step 2)") | |
with gr.Accordion("Advanced Options", open=False): | |
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random seed") | |
gen_btn.click( | |
fn=partial(generate_3d_with_shap_e, xm, diffusion, latent_model, device), | |
inputs=[prompt, rand_seed, state], | |
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state], | |
queue=False) | |
apply_btn.click( | |
fn=partial(_3d_editing, xm, models, diffusion, initial_noise, noise_start_t, device), | |
inputs=[ | |
editing_choice[0], rand_seed, state | |
], | |
outputs=[edited_1, edited_2, edited_3, edited_4, state], | |
queue=True | |
) | |
print("Generate examples...") | |
with gr.Column(): | |
gr.Examples( | |
examples=[ | |
[ "a corgi", | |
"Make the color of it look like rainbow", | |
456, | |
], | |
["a penguin", | |
"Make it look like make of lego", | |
214, | |
], | |
], | |
inputs=[prompt, editing_choice[0], rand_seed], | |
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, edited_1, edited_2, edited_3, edited_4], | |
fn=partial(optimize_all, xm, models, initial_noise, noise_start_t, diffusion, latent_model, device), | |
cache_examples=True, | |
) | |
demo.queue(max_size=10, api_open=False) | |
demo.launch(share=True, show_api=False, show_error=True) | |
if __name__ == '__main__': | |
main() |