Spaces:
Runtime error
Runtime error
from typing import Iterable, List, Optional, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from PIL import Image | |
from shap_e.models.download import default_cache_dir | |
ImageType = Union[np.ndarray, torch.Tensor, Image.Image] | |
class ImageCLIP(nn.Module): | |
""" | |
A wrapper around a pre-trained CLIP model that automatically handles | |
batches of texts, images, and embeddings. | |
""" | |
def __init__( | |
self, | |
device: torch.device, | |
dtype: Optional[torch.dtype] = torch.float32, | |
ensure_used_params: bool = True, | |
clip_name: str = "ViT-L/14", | |
cache_dir: Optional[str] = None, | |
): | |
super().__init__() | |
assert clip_name in ["ViT-L/14", "ViT-B/32"] | |
self.device = device | |
self.ensure_used_params = ensure_used_params | |
# Lazy import because of torchvision. | |
import clip | |
self.clip_model, self.preprocess = clip.load( | |
clip_name, device=device, download_root=cache_dir or default_cache_dir() | |
) | |
self.clip_name = clip_name | |
if dtype is not None: | |
self.clip_model.to(dtype) | |
self._tokenize = clip.tokenize | |
def feature_dim(self) -> int: | |
if self.clip_name == "ViT-L/14": | |
return 768 | |
else: | |
return 512 | |
def grid_size(self) -> int: | |
if self.clip_name == "ViT-L/14": | |
return 16 | |
else: | |
return 7 | |
def grid_feature_dim(self) -> int: | |
if self.clip_name == "ViT-L/14": | |
return 1024 | |
else: | |
return 768 | |
def forward( | |
self, | |
batch_size: int, | |
images: Optional[Iterable[Optional[ImageType]]] = None, | |
texts: Optional[Iterable[Optional[str]]] = None, | |
embeddings: Optional[Iterable[Optional[torch.Tensor]]] = None, | |
) -> torch.Tensor: | |
""" | |
Generate a batch of embeddings from a mixture of images, texts, | |
precomputed embeddings, and possibly empty values. | |
For each batch element, at most one of images, texts, and embeddings | |
should have a non-None value. Embeddings from multiple modalities | |
cannot be mixed for a single batch element. If no modality is provided, | |
a zero embedding will be used for the batch element. | |
""" | |
image_seq = [None] * batch_size if images is None else list(images) | |
text_seq = [None] * batch_size if texts is None else list(texts) | |
embedding_seq = [None] * batch_size if embeddings is None else list(embeddings) | |
assert len(image_seq) == batch_size, "number of images should match batch size" | |
assert len(text_seq) == batch_size, "number of texts should match batch size" | |
assert len(embedding_seq) == batch_size, "number of embeddings should match batch size" | |
if self.ensure_used_params: | |
return self._static_multimodal_embed( | |
images=image_seq, texts=text_seq, embeddings=embedding_seq | |
) | |
result = torch.zeros((batch_size, self.feature_dim), device=self.device) | |
index_images = [] | |
index_texts = [] | |
for i, (image, text, emb) in enumerate(zip(image_seq, text_seq, embedding_seq)): | |
assert ( | |
sum([int(image is not None), int(text is not None), int(emb is not None)]) < 2 | |
), "only one modality may be non-None per batch element" | |
if image is not None: | |
index_images.append((i, image)) | |
elif text is not None: | |
index_texts.append((i, text)) | |
elif emb is not None: | |
result[i] = emb.to(result) | |
if len(index_images): | |
embs = self.embed_images((img for _, img in index_images)) | |
for (i, _), emb in zip(index_images, embs): | |
result[i] = emb.to(result) | |
if len(index_texts): | |
embs = self.embed_text((text for _, text in index_texts)) | |
for (i, _), emb in zip(index_texts, embs): | |
result[i] = emb.to(result) | |
return result | |
def _static_multimodal_embed( | |
self, | |
images: List[Optional[ImageType]] = None, | |
texts: List[Optional[str]] = None, | |
embeddings: List[Optional[torch.Tensor]] = None, | |
) -> torch.Tensor: | |
""" | |
Like forward(), but always runs all encoders to ensure that | |
the forward graph looks the same on every rank. | |
""" | |
image_emb = self.embed_images(images) | |
text_emb = self.embed_text(t if t else "" for t in texts) | |
joined_embs = torch.stack( | |
[ | |
emb.to(device=self.device, dtype=torch.float32) | |
if emb is not None | |
else torch.zeros(self.feature_dim, device=self.device) | |
for emb in embeddings | |
], | |
dim=0, | |
) | |
image_flag = torch.tensor([x is not None for x in images], device=self.device)[ | |
:, None | |
].expand_as(image_emb) | |
text_flag = torch.tensor([x is not None for x in texts], device=self.device)[ | |
:, None | |
].expand_as(image_emb) | |
emb_flag = torch.tensor([x is not None for x in embeddings], device=self.device)[ | |
:, None | |
].expand_as(image_emb) | |
return ( | |
image_flag.float() * image_emb | |
+ text_flag.float() * text_emb | |
+ emb_flag.float() * joined_embs | |
+ self.clip_model.logit_scale * 0 # avoid unused parameters | |
) | |
def embed_images(self, xs: Iterable[Optional[ImageType]]) -> torch.Tensor: | |
""" | |
:param xs: N images, stored as numpy arrays, tensors, or PIL images. | |
:return: an [N x D] tensor of features. | |
""" | |
clip_inputs = self.images_to_tensor(xs) | |
results = self.clip_model.encode_image(clip_inputs).float() | |
return results / torch.linalg.norm(results, dim=-1, keepdim=True) | |
def embed_text(self, prompts: Iterable[str]) -> torch.Tensor: | |
""" | |
Embed text prompts as an [N x D] tensor. | |
""" | |
enc = self.clip_model.encode_text( | |
self._tokenize(list(prompts), truncate=True).to(self.device) | |
).float() | |
return enc / torch.linalg.norm(enc, dim=-1, keepdim=True) | |
def embed_images_grid(self, xs: Iterable[Optional[ImageType]]) -> torch.Tensor: | |
""" | |
Embed images into latent grids. | |
:param xs: an iterable of images to embed. | |
:return: a tensor of shape [N x C x L], where L = self.grid_size**2. | |
""" | |
if self.ensure_used_params: | |
extra_value = 0.0 | |
for p in self.parameters(): | |
extra_value = extra_value + p.mean() * 0.0 | |
else: | |
extra_value = 0.0 | |
x = self.images_to_tensor(xs).to(self.clip_model.dtype) | |
# https://github.com/openai/CLIP/blob/4d120f3ec35b30bd0f992f5d8af2d793aad98d2a/clip/model.py#L225 | |
vt = self.clip_model.visual | |
x = vt.conv1(x) # shape = [*, width, grid, grid] | |
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
x = torch.cat( | |
[ | |
vt.class_embedding.to(x.dtype) | |
+ torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), | |
x, | |
], | |
dim=1, | |
) # shape = [*, grid ** 2 + 1, width] | |
x = x + vt.positional_embedding.to(x.dtype) | |
x = vt.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = vt.transformer(x) | |
x = x.permute(1, 2, 0) # LND -> NDL | |
return x[..., 1:].contiguous().float() + extra_value | |
def images_to_tensor(self, xs: Iterable[Optional[ImageType]]) -> torch.Tensor: | |
return torch.stack([self.preprocess(_image_to_pil(x)) for x in xs], dim=0).to(self.device) | |
class FrozenImageCLIP: | |
def __init__(self, device: torch.device, **kwargs): | |
self.model = ImageCLIP(device, dtype=None, ensure_used_params=False, **kwargs) | |
for parameter in self.model.parameters(): | |
parameter.requires_grad_(False) | |
def feature_dim(self) -> int: | |
return self.model.feature_dim | |
def grid_size(self) -> int: | |
return self.model.grid_size | |
def grid_feature_dim(self) -> int: | |
return self.model.grid_feature_dim | |
def __call__( | |
self, | |
batch_size: int, | |
images: Optional[Iterable[Optional[ImageType]]] = None, | |
texts: Optional[Iterable[Optional[str]]] = None, | |
embeddings: Optional[Iterable[Optional[torch.Tensor]]] = None, | |
) -> torch.Tensor: | |
# We don't do a no_grad() here so that gradients could still | |
# flow to the input embeddings argument. | |
# This behavior is currently not used, but it could be. | |
return self.model(batch_size=batch_size, images=images, texts=texts, embeddings=embeddings) | |
def embed_images(self, xs: Iterable[Optional[ImageType]]) -> torch.Tensor: | |
with torch.no_grad(): | |
return self.model.embed_images(xs) | |
def embed_text(self, prompts: Iterable[str]) -> torch.Tensor: | |
with torch.no_grad(): | |
return self.model.embed_text(prompts) | |
def embed_images_grid(self, xs: Iterable[Optional[ImageType]]) -> torch.Tensor: | |
with torch.no_grad(): | |
return self.model.embed_images_grid(xs) | |
def _image_to_pil(obj: Optional[ImageType]) -> Image.Image: | |
if obj is None: | |
return Image.fromarray(np.zeros([64, 64, 3], dtype=np.uint8)) | |
if isinstance(obj, np.ndarray): | |
return Image.fromarray(obj.astype(np.uint8)) | |
elif isinstance(obj, torch.Tensor): | |
return Image.fromarray(obj.detach().cpu().numpy().astype(np.uint8)) | |
else: | |
return obj | |