File size: 9,474 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import random
from collections import defaultdict
from dataclasses import dataclass
from typing import BinaryIO, Dict, List, Optional, Union

import blobfile as bf
import numpy as np

from shap_e.rendering.view_data import ViewData

from .ply_util import write_ply

COLORS = frozenset(["R", "G", "B", "A"])


def preprocess(data, channel):
    if channel in COLORS:
        return np.round(data * 255.0)
    return data


@dataclass
class PointCloud:
    """
    An array of points sampled on a surface. Each point may have zero or more
    channel attributes.

    :param coords: an [N x 3] array of point coordinates.
    :param channels: a dict mapping names to [N] arrays of channel values.
    """

    coords: np.ndarray
    channels: Dict[str, np.ndarray]

    @classmethod
    def from_rgbd(cls, vd: ViewData, num_views: Optional[int] = None) -> "PointCloud":
        """
        Construct a point cloud from the given view data.

        The data must have a depth channel. All other channels will be stored
        in the `channels` attribute of the result.

        Pixels in the rendered views are not converted into points in the cloud
        if they have infinite depth or less than 1.0 alpha.
        """
        channel_names = vd.channel_names
        if "D" not in channel_names:
            raise ValueError(f"view data must have depth channel")
        depth_index = channel_names.index("D")

        all_coords = []
        all_channels = defaultdict(list)

        if num_views is None:
            num_views = vd.num_views
        for i in range(num_views):
            camera, channel_values = vd.load_view(i, channel_names)
            flat_values = channel_values.reshape([-1, len(channel_names)])

            # Create an array of integer (x, y) image coordinates for Camera methods.
            image_coords = camera.image_coords()

            # Select subset of pixels that have meaningful depth/color.
            image_mask = np.isfinite(flat_values[:, depth_index])
            if "A" in channel_names:
                image_mask = image_mask & (flat_values[:, channel_names.index("A")] >= 1 - 1e-5)
            image_coords = image_coords[image_mask]
            flat_values = flat_values[image_mask]

            # Use the depth and camera information to compute the coordinates
            # corresponding to every visible pixel.
            camera_rays = camera.camera_rays(image_coords)
            camera_origins = camera_rays[:, 0]
            camera_directions = camera_rays[:, 1]
            depth_dirs = camera.depth_directions(image_coords)
            ray_scales = flat_values[:, depth_index] / np.sum(
                camera_directions * depth_dirs, axis=-1
            )
            coords = camera_origins + camera_directions * ray_scales[:, None]

            all_coords.append(coords)
            for j, name in enumerate(channel_names):
                if name != "D":
                    all_channels[name].append(flat_values[:, j])

        if len(all_coords) == 0:
            return cls(coords=np.zeros([0, 3], dtype=np.float32), channels={})

        return cls(
            coords=np.concatenate(all_coords, axis=0),
            channels={k: np.concatenate(v, axis=0) for k, v in all_channels.items()},
        )

    @classmethod
    def load(cls, f: Union[str, BinaryIO]) -> "PointCloud":
        """
        Load the point cloud from a .npz file.
        """
        if isinstance(f, str):
            with bf.BlobFile(f, "rb") as reader:
                return cls.load(reader)
        else:
            obj = np.load(f)
            keys = list(obj.keys())
            return PointCloud(
                coords=obj["coords"],
                channels={k: obj[k] for k in keys if k != "coords"},
            )

    def save(self, f: Union[str, BinaryIO]):
        """
        Save the point cloud to a .npz file.
        """
        if isinstance(f, str):
            with bf.BlobFile(f, "wb") as writer:
                self.save(writer)
        else:
            np.savez(f, coords=self.coords, **self.channels)

    def write_ply(self, raw_f: BinaryIO):
        write_ply(
            raw_f,
            coords=self.coords,
            rgb=(
                np.stack([self.channels[x] for x in "RGB"], axis=1)
                if all(x in self.channels for x in "RGB")
                else None
            ),
        )

    def random_sample(self, num_points: int, **subsample_kwargs) -> "PointCloud":
        """
        Sample a random subset of this PointCloud.

        :param num_points: maximum number of points to sample.
        :param subsample_kwargs: arguments to self.subsample().
        :return: a reduced PointCloud, or self if num_points is not less than
                 the current number of points.
        """
        if len(self.coords) <= num_points:
            return self
        indices = np.random.choice(len(self.coords), size=(num_points,), replace=False)
        return self.subsample(indices, **subsample_kwargs)

    def farthest_point_sample(
        self, num_points: int, init_idx: Optional[int] = None, **subsample_kwargs
    ) -> "PointCloud":
        """
        Sample a subset of the point cloud that is evenly distributed in space.

        First, a random point is selected. Then each successive point is chosen
        such that it is furthest from the currently selected points.

        The time complexity of this operation is O(NM), where N is the original
        number of points and M is the reduced number. Therefore, performance
        can be improved by randomly subsampling points with random_sample()
        before running farthest_point_sample().

        :param num_points: maximum number of points to sample.
        :param init_idx: if specified, the first point to sample.
        :param subsample_kwargs: arguments to self.subsample().
        :return: a reduced PointCloud, or self if num_points is not less than
                 the current number of points.
        """
        if len(self.coords) <= num_points:
            return self
        init_idx = random.randrange(len(self.coords)) if init_idx is None else init_idx
        indices = np.zeros([num_points], dtype=np.int64)
        indices[0] = init_idx
        sq_norms = np.sum(self.coords**2, axis=-1)

        def compute_dists(idx: int):
            # Utilize equality: ||A-B||^2 = ||A||^2 + ||B||^2 - 2*(A @ B).
            return sq_norms + sq_norms[idx] - 2 * (self.coords @ self.coords[idx])

        cur_dists = compute_dists(init_idx)
        for i in range(1, num_points):
            idx = np.argmax(cur_dists)
            indices[i] = idx

            # Without this line, we may duplicate an index more than once if
            # there are duplicate points, due to rounding errors.
            cur_dists[idx] = -1

            cur_dists = np.minimum(cur_dists, compute_dists(idx))

        return self.subsample(indices, **subsample_kwargs)

    def subsample(self, indices: np.ndarray, average_neighbors: bool = False) -> "PointCloud":
        if not average_neighbors:
            return PointCloud(
                coords=self.coords[indices],
                channels={k: v[indices] for k, v in self.channels.items()},
            )

        new_coords = self.coords[indices]
        neighbor_indices = PointCloud(coords=new_coords, channels={}).nearest_points(self.coords)

        # Make sure every point points to itself, which might not
        # be the case if points are duplicated or there is rounding
        # error.
        neighbor_indices[indices] = np.arange(len(indices))

        new_channels = {}
        for k, v in self.channels.items():
            v_sum = np.zeros_like(v[: len(indices)])
            v_count = np.zeros_like(v[: len(indices)])
            np.add.at(v_sum, neighbor_indices, v)
            np.add.at(v_count, neighbor_indices, 1)
            new_channels[k] = v_sum / v_count
        return PointCloud(coords=new_coords, channels=new_channels)

    def select_channels(self, channel_names: List[str]) -> np.ndarray:
        data = np.stack([preprocess(self.channels[name], name) for name in channel_names], axis=-1)
        return data

    def nearest_points(self, points: np.ndarray, batch_size: int = 16384) -> np.ndarray:
        """
        For each point in another set of points, compute the point in this
        pointcloud which is closest.

        :param points: an [N x 3] array of points.
        :param batch_size: the number of neighbor distances to compute at once.
                           Smaller values save memory, while larger values may
                           make the computation faster.
        :return: an [N] array of indices into self.coords.
        """
        norms = np.sum(self.coords**2, axis=-1)
        all_indices = []
        for i in range(0, len(points), batch_size):
            batch = points[i : i + batch_size]
            dists = norms + np.sum(batch**2, axis=-1)[:, None] - 2 * (batch @ self.coords.T)
            all_indices.append(np.argmin(dists, axis=-1))
        return np.concatenate(all_indices, axis=0)

    def combine(self, other: "PointCloud") -> "PointCloud":
        assert self.channels.keys() == other.channels.keys()
        return PointCloud(
            coords=np.concatenate([self.coords, other.coords], axis=0),
            channels={
                k: np.concatenate([v, other.channels[k]], axis=0) for k, v in self.channels.items()
            },
        )