File size: 10,027 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
from dataclasses import dataclass
from functools import lru_cache
from typing import Tuple

import torch

from ._mc_table import MC_TABLE
from .torch_mesh import TorchMesh


def marching_cubes(
    field: torch.Tensor,
    min_point: torch.Tensor,
    size: torch.Tensor,
) -> TorchMesh:
    """
    For a signed distance field, produce a mesh using marching cubes.

    :param field: a 3D tensor of field values, where negative values correspond
                  to the outside of the shape. The dimensions correspond to the
                  x, y, and z directions, respectively.
    :param min_point: a tensor of shape [3] containing the point corresponding
                      to (0, 0, 0) in the field.
    :param size: a tensor of shape [3] containing the per-axis distance from the
                 (0, 0, 0) field corner and the (-1, -1, -1) field corner.
    """
    assert len(field.shape) == 3, "input must be a 3D scalar field"
    dev = field.device

    grid_size = field.shape
    grid_size_tensor = torch.tensor(grid_size).to(size)
    lut = _lookup_table(dev)

    # Create bitmasks between 0 and 255 (inclusive) indicating the state
    # of the eight corners of each cube.
    bitmasks = (field > 0).to(torch.uint8)
    bitmasks = bitmasks[:-1, :, :] | (bitmasks[1:, :, :] << 1)
    bitmasks = bitmasks[:, :-1, :] | (bitmasks[:, 1:, :] << 2)
    bitmasks = bitmasks[:, :, :-1] | (bitmasks[:, :, 1:] << 4)

    # Compute corner coordinates across the entire grid.
    corner_coords = torch.empty(*grid_size, 3, device=dev, dtype=field.dtype)
    corner_coords[range(grid_size[0]), :, :, 0] = torch.arange(
        grid_size[0], device=dev, dtype=field.dtype
    )[:, None, None]
    corner_coords[:, range(grid_size[1]), :, 1] = torch.arange(
        grid_size[1], device=dev, dtype=field.dtype
    )[:, None]
    corner_coords[:, :, range(grid_size[2]), 2] = torch.arange(
        grid_size[2], device=dev, dtype=field.dtype
    )

    # Compute all vertices across all edges in the grid, even though we will
    # throw some out later. We have (X-1)*Y*Z + X*(Y-1)*Z + X*Y*(Z-1) vertices.
    # These are all midpoints, and don't account for interpolation (which is
    # done later based on the used edge midpoints).
    edge_midpoints = torch.cat(
        [
            ((corner_coords[:-1] + corner_coords[1:]) / 2).reshape(-1, 3),
            ((corner_coords[:, :-1] + corner_coords[:, 1:]) / 2).reshape(-1, 3),
            ((corner_coords[:, :, :-1] + corner_coords[:, :, 1:]) / 2).reshape(-1, 3),
        ],
        dim=0,
    )

    # Create a flat array of [X, Y, Z] indices for each cube.
    cube_indices = torch.zeros(
        grid_size[0] - 1, grid_size[1] - 1, grid_size[2] - 1, 3, device=dev, dtype=torch.long
    )
    cube_indices[range(grid_size[0] - 1), :, :, 0] = torch.arange(grid_size[0] - 1, device=dev)[
        :, None, None
    ]
    cube_indices[:, range(grid_size[1] - 1), :, 1] = torch.arange(grid_size[1] - 1, device=dev)[
        :, None
    ]
    cube_indices[:, :, range(grid_size[2] - 1), 2] = torch.arange(grid_size[2] - 1, device=dev)
    flat_cube_indices = cube_indices.reshape(-1, 3)

    # Create a flat array mapping each cube to 12 global edge indices.
    edge_indices = _create_flat_edge_indices(flat_cube_indices, grid_size)

    # Apply the LUT to figure out the triangles.
    flat_bitmasks = bitmasks.reshape(
        -1
    ).long()  # must cast to long for indexing to believe this not a mask
    local_tris = lut.cases[flat_bitmasks]
    local_masks = lut.masks[flat_bitmasks]
    # Compute the global edge indices for the triangles.
    global_tris = torch.gather(
        edge_indices, 1, local_tris.reshape(local_tris.shape[0], -1)
    ).reshape(local_tris.shape)
    # Select the used triangles for each cube.
    selected_tris = global_tris.reshape(-1, 3)[local_masks.reshape(-1)]

    # Now we have a bunch of indices into the full list of possible vertices,
    # but we want to reduce this list to only the used vertices.
    used_vertex_indices = torch.unique(selected_tris.view(-1))
    used_edge_midpoints = edge_midpoints[used_vertex_indices]
    old_index_to_new_index = torch.zeros(len(edge_midpoints), device=dev, dtype=torch.long)
    old_index_to_new_index[used_vertex_indices] = torch.arange(
        len(used_vertex_indices), device=dev, dtype=torch.long
    )

    # Rewrite the triangles to use the new indices
    selected_tris = torch.gather(old_index_to_new_index, 0, selected_tris.view(-1)).reshape(
        selected_tris.shape
    )

    # Compute the actual interpolated coordinates corresponding to edge midpoints.
    v1 = torch.floor(used_edge_midpoints).to(torch.long)
    v2 = torch.ceil(used_edge_midpoints).to(torch.long)
    s1 = field[v1[:, 0], v1[:, 1], v1[:, 2]]
    s2 = field[v2[:, 0], v2[:, 1], v2[:, 2]]
    p1 = (v1.float() / (grid_size_tensor - 1)) * size + min_point
    p2 = (v2.float() / (grid_size_tensor - 1)) * size + min_point
    # The signs of s1 and s2 should be different. We want to find
    # t such that t*s2 + (1-t)*s1 = 0.
    t = (s1 / (s1 - s2))[:, None]
    verts = t * p2 + (1 - t) * p1

    return TorchMesh(verts=verts, faces=selected_tris)


def _create_flat_edge_indices(
    flat_cube_indices: torch.Tensor, grid_size: Tuple[int, int, int]
) -> torch.Tensor:
    num_xs = (grid_size[0] - 1) * grid_size[1] * grid_size[2]
    y_offset = num_xs
    num_ys = grid_size[0] * (grid_size[1] - 1) * grid_size[2]
    z_offset = num_xs + num_ys
    return torch.stack(
        [
            # Edges spanning x-axis.
            flat_cube_indices[:, 0] * grid_size[1] * grid_size[2]
            + flat_cube_indices[:, 1] * grid_size[2]
            + flat_cube_indices[:, 2],
            flat_cube_indices[:, 0] * grid_size[1] * grid_size[2]
            + (flat_cube_indices[:, 1] + 1) * grid_size[2]
            + flat_cube_indices[:, 2],
            flat_cube_indices[:, 0] * grid_size[1] * grid_size[2]
            + flat_cube_indices[:, 1] * grid_size[2]
            + flat_cube_indices[:, 2]
            + 1,
            flat_cube_indices[:, 0] * grid_size[1] * grid_size[2]
            + (flat_cube_indices[:, 1] + 1) * grid_size[2]
            + flat_cube_indices[:, 2]
            + 1,
            # Edges spanning y-axis.
            (
                y_offset
                + flat_cube_indices[:, 0] * (grid_size[1] - 1) * grid_size[2]
                + flat_cube_indices[:, 1] * grid_size[2]
                + flat_cube_indices[:, 2]
            ),
            (
                y_offset
                + (flat_cube_indices[:, 0] + 1) * (grid_size[1] - 1) * grid_size[2]
                + flat_cube_indices[:, 1] * grid_size[2]
                + flat_cube_indices[:, 2]
            ),
            (
                y_offset
                + flat_cube_indices[:, 0] * (grid_size[1] - 1) * grid_size[2]
                + flat_cube_indices[:, 1] * grid_size[2]
                + flat_cube_indices[:, 2]
                + 1
            ),
            (
                y_offset
                + (flat_cube_indices[:, 0] + 1) * (grid_size[1] - 1) * grid_size[2]
                + flat_cube_indices[:, 1] * grid_size[2]
                + flat_cube_indices[:, 2]
                + 1
            ),
            # Edges spanning z-axis.
            (
                z_offset
                + flat_cube_indices[:, 0] * grid_size[1] * (grid_size[2] - 1)
                + flat_cube_indices[:, 1] * (grid_size[2] - 1)
                + flat_cube_indices[:, 2]
            ),
            (
                z_offset
                + (flat_cube_indices[:, 0] + 1) * grid_size[1] * (grid_size[2] - 1)
                + flat_cube_indices[:, 1] * (grid_size[2] - 1)
                + flat_cube_indices[:, 2]
            ),
            (
                z_offset
                + flat_cube_indices[:, 0] * grid_size[1] * (grid_size[2] - 1)
                + (flat_cube_indices[:, 1] + 1) * (grid_size[2] - 1)
                + flat_cube_indices[:, 2]
            ),
            (
                z_offset
                + (flat_cube_indices[:, 0] + 1) * grid_size[1] * (grid_size[2] - 1)
                + (flat_cube_indices[:, 1] + 1) * (grid_size[2] - 1)
                + flat_cube_indices[:, 2]
            ),
        ],
        dim=-1,
    )


@dataclass
class McLookupTable:
    # Coordinates in triangles are represented as edge indices from 0-12
    # Here is an MC cell with both corner and edge indices marked.
    #        6 + ---------- 3 ----------+ 7
    #         /|                       /|
    #        6 |                      7 |
    #       /  |                     /  |
    #    4 +--------- 2 ------------+ 5 |
    #      |   10                   |   |
    #      |   |                    |   11
    #      |   |                    |   |
    #      8   | 2                  9   | 3
    #      |   +--------- 1 --------|---+
    #      |  /                     |  /
    #      | 4                      | 5
    #      |/                       |/
    #      +---------- 0 -----------+
    #     0                           1
    cases: torch.Tensor  # [256 x 5 x 3] long tensor
    masks: torch.Tensor  # [256 x 5] bool tensor


@lru_cache(maxsize=9)  # if there's more than 8 GPUs and a CPU, don't bother caching
def _lookup_table(device: torch.device) -> McLookupTable:
    cases = torch.zeros(256, 5, 3, device=device, dtype=torch.long)
    masks = torch.zeros(256, 5, device=device, dtype=torch.bool)

    edge_to_index = {
        (0, 1): 0,
        (2, 3): 1,
        (4, 5): 2,
        (6, 7): 3,
        (0, 2): 4,
        (1, 3): 5,
        (4, 6): 6,
        (5, 7): 7,
        (0, 4): 8,
        (1, 5): 9,
        (2, 6): 10,
        (3, 7): 11,
    }

    for i, case in enumerate(MC_TABLE):
        for j, tri in enumerate(case):
            for k, (c1, c2) in enumerate(zip(tri[::2], tri[1::2])):
                cases[i, j, k] = edge_to_index[(c1, c2) if c1 < c2 else (c2, c1)]
            masks[i, j] = True
    return McLookupTable(cases=cases, masks=masks)