File size: 19,695 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
from abc import ABC, abstractmethod
from dataclasses import dataclass
from functools import partial
from typing import Any, Dict, List, Optional, Tuple

import torch

from shap_e.models.nn.utils import sample_pmf
from shap_e.models.volume import Volume, VolumeRange
from shap_e.util.collections import AttrDict

from .model import NeRFModel, Query


def render_rays(
    rays: torch.Tensor,
    parts: List["RayVolumeIntegral"],
    void_model: NeRFModel,
    shared: bool = False,
    prev_raw_outputs: Optional[List[AttrDict]] = None,
    render_with_direction: bool = True,
    importance_sampling_options: Optional[Dict[str, Any]] = None,
) -> Tuple["RayVolumeIntegralResults", List["RaySampler"], List[AttrDict]]:
    """
    Perform volumetric rendering over a partition of possible t's in the union
    of rendering volumes (written below with some abuse of notations)

        C(r) := sum(
            transmittance(t[i]) *
            integrate(
                lambda t: density(t) * channels(t) * transmittance(t),
                [t[i], t[i + 1]],
            )
            for i in range(len(parts))
        ) + transmittance(t[-1]) * void_model(t[-1]).channels

    where

    1) transmittance(s) := exp(-integrate(density, [t[0], s])) calculates the
       probability of light passing through the volume specified by [t[0], s].
       (transmittance of 1 means light can pass freely)
    2) density and channels are obtained by evaluating the appropriate
       part.model at time t.
    3) [t[i], t[i + 1]] is defined as the range of t where the ray intersects
       (parts[i].volume \\ union(part.volume for part in parts[:i])) at the surface
       of the shell (if bounded). If the ray does not intersect, the integral over
       this segment is evaluated as 0 and transmittance(t[i + 1]) :=
       transmittance(t[i]).
    4) The last term is integration to infinity (e.g. [t[-1], math.inf]) that
       is evaluated by the void_model (i.e. we consider this space to be empty).

    :param rays: [batch_size x ... x 2 x 3] origin and direction.
    :param parts: disjoint volume integrals.
    :param void_model: use this model to integrate over the empty space
    :param shared: All RayVolumeIntegrals are calculated with the same model.
    :param prev_raw_outputs: Raw outputs from the previous rendering step

    :return: A tuple of
        - AttrDict containing the rendered `channels`, `distances`, and the `aux_losses`
        - A list of importance samplers for additional fine-grained rendering
        - A list of raw output for each interval
    """
    if importance_sampling_options is None:
        importance_sampling_options = {}

    origin, direc = rays[..., 0, :], rays[..., 1, :]

    if prev_raw_outputs is None:
        prev_raw_outputs = [None] * len(parts)

    samplers = []
    raw_outputs = []
    t0 = None
    results = None
    # import pdb; pdb.set_trace()
    for part_i, prev_raw_i in zip(parts, prev_raw_outputs):

        # Integrate over [t[i], t[i + 1]]
        results_i = part_i.render_rays(
            origin,
            direc,
            t0=t0,
            prev_raw=prev_raw_i,
            shared=shared,
            render_with_direction=render_with_direction,
        )

        # Create an importance sampler for (optional) fine rendering
        samplers.append(
            ImportanceRaySampler(
                results_i.volume_range, results_i.raw, **importance_sampling_options
            )
        )
        raw_outputs.append(results_i.raw)

        # Pass t[i + 1] as the start of integration for the next interval.
        t0 = results_i.volume_range.next_t0()

        # Combine the results from [t[0], t[i]] and [t[i], t[i+1]]
        results = results_i if results is None else results.combine(results_i)

    # While integrating out [t[-1], math.inf] is the correct thing to do, this
    # erases a lot of useful information. Also, void_model is meant to predict
    # the channels at t=math.inf.

    # # Add the void background over [t[-1], math.inf] to complete integration.
    # results = results.combine(
    #     RayVolumeIntegralResults(
    #         output=AttrDict(
    #             channels=void_model(origin, direc),
    #             distances=torch.zeros_like(t0),
    #             aux_losses=AttrDict(),
    #         ),
    #         volume_range=VolumeRange(
    #             t0=t0,
    #             t1=torch.full_like(t0, math.inf),
    #             intersected=torch.full_like(results.volume_range.intersected, True),
    #         ),
    #         # Void space extends to infinity. It is assumed that no light
    #         # passes beyond the void.
    #         transmittance=torch.zeros_like(results_i.transmittance),
    #     )
    # )
    results.output.channels = results.output.channels + results.transmittance * void_model(
        Query(origin, direc)
    )

    return results, samplers, raw_outputs


@dataclass
class RayVolumeIntegralResults:
    """
    Stores the relevant state and results of

        integrate(
            lambda t: density(t) * channels(t) * transmittance(t),
            [t0, t1],
        )
    """

    # Rendered output and auxiliary losses
    # output.channels has shape [batch_size, *inner_shape, n_channels]
    output: AttrDict

    """
    Optional values
    """

    # Raw values contain the sampled `ts`, `density`, `channels`, etc.
    raw: Optional[AttrDict] = None

    # Integration
    volume_range: Optional[VolumeRange] = None

    # If a ray intersects, the transmittance from t0 to t1 (e.g. the
    # probability that the ray passes through this volume).
    # has shape [batch_size, *inner_shape, 1]
    transmittance: Optional[torch.Tensor] = None

    def combine(self, cur: "RayVolumeIntegralResults") -> "RayVolumeIntegralResults":
        """
        Combines the integration results of `self` over [t0, t1] and
        `cur` over [t1, t2] to produce a new set of results over [t0, t2] by
        using a similar equation to (4) in NeRF++:

            integrate(
                lambda t: density(t) * channels(t) * transmittance(t),
                [t0, t2]
            )

          = integrate(
                lambda t: density(t) * channels(t) * transmittance(t),
                [t0, t1]
            ) + transmittance(t1) * integrate(
                lambda t: density(t) * channels(t) * transmittance(t),
                [t1, t2]
            )
        """
        assert torch.allclose(self.volume_range.next_t0(), cur.volume_range.t0)

        def _combine_fn(
            prev_val: Optional[torch.Tensor],
            cur_val: Optional[torch.Tensor],
            *,
            prev_transmittance: torch.Tensor,
        ):
            assert prev_val is not None
            if cur_val is None:
                # cur_output.aux_losses are empty for the void_model.
                return prev_val
            return prev_val + prev_transmittance * cur_val

        output = self.output.combine(
            cur.output, combine_fn=partial(_combine_fn, prev_transmittance=self.transmittance)
        )

        combined = RayVolumeIntegralResults(
            output=output,
            volume_range=self.volume_range.extend(cur.volume_range),
            transmittance=self.transmittance * cur.transmittance,
        )
        return combined


@dataclass
class RayVolumeIntegral:
    model: NeRFModel
    volume: Volume
    sampler: "RaySampler"
    n_samples: int

    def render_rays(
        self,
        origin: torch.Tensor,
        direction: torch.Tensor,
        t0: Optional[torch.Tensor] = None,
        prev_raw: Optional[AttrDict] = None,
        shared: bool = False,
        render_with_direction: bool = True,
    ) -> "RayVolumeIntegralResults":
        """
        Perform volumetric rendering over the given volume.

        :param position: [batch_size, *shape, 3]
        :param direction: [batch_size, *shape, 3]
        :param t0: Optional [batch_size, *shape, 1]
        :param prev_raw: the raw outputs when using multiple levels with this model.
        :param shared: means the same model is used for all RayVolumeIntegral's
        :param render_with_direction: use the incoming ray direction when querying the model.

        :return: RayVolumeIntegralResults
        """
        # 1. Intersect the rays with the current volume and sample ts to
        # integrate along.
        vrange = self.volume.intersect(origin, direction, t0_lower=t0)
        ts = self.sampler.sample(vrange.t0, vrange.t1, self.n_samples)

        if prev_raw is not None and not shared:
            # Append the previous ts now before fprop because previous
            # rendering used a different model and we can't reuse the output.
            ts = torch.sort(torch.cat([ts, prev_raw.ts], dim=-2), dim=-2).values

        # Shape sanity checks
        batch_size, *_shape, _t0_dim = vrange.t0.shape
        _, *ts_shape, _ts_dim = ts.shape

        # 2. Get the points along the ray and query the model
        directions = torch.broadcast_to(direction.unsqueeze(-2), [batch_size, *ts_shape, 3])
        positions = origin.unsqueeze(-2) + ts * directions

        optional_directions = directions if render_with_direction else None
        mids = (ts[..., 1:, :] + ts[..., :-1, :]) / 2
        raw = self.model(
            Query(
                position=positions,
                direction=optional_directions,
                t_min=torch.cat([vrange.t0[..., None, :], mids], dim=-2),
                t_max=torch.cat([mids, vrange.t1[..., None, :]], dim=-2),
            )
        )
        raw.ts = ts

        if prev_raw is not None and shared:
            # We can append the additional queries to previous raw outputs
            # before integration
            copy = prev_raw.copy()
            result = torch.sort(torch.cat([raw.pop("ts"), copy.pop("ts")], dim=-2), dim=-2)
            merge_results = partial(self._merge_results, dim=-2, indices=result.indices)
            raw = raw.combine(copy, merge_results)
            raw.ts = result.values

        # 3. Integrate the raw results
        output, transmittance = self.integrate_samples(vrange, raw)

        # 4. Clean up results that do not intersect with the volume.
        transmittance = torch.where(
            vrange.intersected, transmittance, torch.ones_like(transmittance)
        )

        def _mask_fn(_key: str, tensor: torch.Tensor):
            return torch.where(vrange.intersected, tensor, torch.zeros_like(tensor))

        def _is_tensor(_key: str, value: Any):
            return isinstance(value, torch.Tensor)

        output = output.map(map_fn=_mask_fn, should_map=_is_tensor)

        return RayVolumeIntegralResults(
            output=output,
            raw=raw,
            volume_range=vrange,
            transmittance=transmittance,
        )

    def integrate_samples(
        self,
        volume_range: VolumeRange,
        raw: AttrDict,
    ) -> Tuple[AttrDict, torch.Tensor]:
        """
        Integrate the raw.channels along with other aux_losses and values to
        produce the final output dictionary containing rendered `channels`,
        estimated `distances` and `aux_losses`.

        :param volume_range: Specifies the integral range [t0, t1]
        :param raw: Contains a dict of function evaluations at ts. Should have

            density: torch.Tensor [batch_size, *shape, n_samples, 1]
            channels: torch.Tensor [batch_size, *shape, n_samples, n_channels]
            aux_losses: {key: torch.Tensor [batch_size, *shape, n_samples, 1] for each key}
            no_weight_grad_aux_losses: an optional set of losses for which the weights
                                       should be detached before integration.

            after the call, integrate_samples populates some intermediate calculations
            for later use like

            weights: torch.Tensor [batch_size, *shape, n_samples, 1] (density *
                transmittance)[i] weight for each rgb output at [..., i, :].
        :returns: a tuple of (
            a dictionary of rendered outputs and aux_losses,
            transmittance of this volume,
        )
        """

        # 1. Calculate the weights
        _, _, dt = volume_range.partition(raw.ts)
        ddensity = raw.density * dt

        mass = torch.cumsum(ddensity, dim=-2)
        transmittance = torch.exp(-mass[..., -1, :])

        alphas = 1.0 - torch.exp(-ddensity)
        Ts = torch.exp(torch.cat([torch.zeros_like(mass[..., :1, :]), -mass[..., :-1, :]], dim=-2))
        # This is the probability of light hitting and reflecting off of
        # something at depth [..., i, :].
        weights = alphas * Ts

        # 2. Integrate all results
        def _integrate(key: str, samples: torch.Tensor, weights: torch.Tensor):
            if key == "density":
                # Omit integrating the density, because we don't need it
                return None
            return torch.sum(samples * weights, dim=-2)

        def _is_tensor(_key: str, value: Any):
            return isinstance(value, torch.Tensor)

        if raw.no_weight_grad_aux_losses:
            extra_aux_losses = raw.no_weight_grad_aux_losses.map(
                partial(_integrate, weights=weights.detach()), should_map=_is_tensor
            )
        else:
            extra_aux_losses = {}
        output = raw.map(partial(_integrate, weights=weights), should_map=_is_tensor)
        if "no_weight_grad_aux_losses" in output:
            del output["no_weight_grad_aux_losses"]
        output.aux_losses.update(extra_aux_losses)

        # Integrating the ts yields the distance away from the origin; rename the variable.
        output.distances = output.ts
        del output["ts"]
        del output["density"]

        assert output.distances.shape == (*output.channels.shape[:-1], 1)
        assert output.channels.shape[:-1] == raw.channels.shape[:-2]
        assert output.channels.shape[-1] == raw.channels.shape[-1]

        # 3. Reduce loss
        def _reduce_loss(_key: str, loss: torch.Tensor):
            return loss.view(loss.shape[0], -1).sum(dim=-1)

        # 4. Store other useful calculations
        raw.weights = weights

        output.aux_losses = output.aux_losses.map(_reduce_loss)

        return output, transmittance

    def _merge_results(
        self, a: Optional[torch.Tensor], b: torch.Tensor, dim: int, indices: torch.Tensor
    ):
        """
        :param a: [..., n_a, ...]. The other dictionary containing the b's may
            contain extra tensors from earlier calculations, so a can be None.
        :param b: [..., n_b, ...]
        :param dim: dimension to merge
        :param indices: how the merged results should be sorted at the end
        :return: a concatted and sorted tensor of size [..., n_a + n_b, ...]
        """
        if a is None:
            return None

        merged = torch.cat([a, b], dim=dim)
        return torch.gather(merged, dim=dim, index=torch.broadcast_to(indices, merged.shape))


class RaySampler(ABC):
    @abstractmethod
    def sample(self, t0: torch.Tensor, t1: torch.Tensor, n_samples: int) -> torch.Tensor:
        """
        :param t0: start time has shape [batch_size, *shape, 1]
        :param t1: finish time has shape [batch_size, *shape, 1]
        :param n_samples: number of ts to sample
        :return: sampled ts of shape [batch_size, *shape, n_samples, 1]
        """


class StratifiedRaySampler(RaySampler):
    """
    Instead of fixed intervals, a sample is drawn uniformly at random from each
    interval.
    """

    def __init__(self, depth_mode: str = "linear"):
        """
        :param depth_mode: linear samples ts linearly in depth. harmonic ensures
            closer points are sampled more densely.
        """
        self.depth_mode = depth_mode
        assert self.depth_mode in ("linear", "geometric", "harmonic")

    def sample(
        self,
        t0: torch.Tensor,
        t1: torch.Tensor,
        n_samples: int,
        epsilon: float = 1e-3,
    ) -> torch.Tensor:
        """
        :param t0: start time has shape [batch_size, *shape, 1]
        :param t1: finish time has shape [batch_size, *shape, 1]
        :param n_samples: number of ts to sample
        :return: sampled ts of shape [batch_size, *shape, n_samples, 1]
        """
        ones = [1] * (len(t0.shape) - 1)
        ts = torch.linspace(0, 1, n_samples).view(*ones, n_samples).to(t0.dtype).to(t0.device)

        if self.depth_mode == "linear":
            ts = t0 * (1.0 - ts) + t1 * ts
        elif self.depth_mode == "geometric":
            ts = (t0.clamp(epsilon).log() * (1.0 - ts) + t1.clamp(epsilon).log() * ts).exp()
        elif self.depth_mode == "harmonic":
            # The original NeRF recommends this interpolation scheme for
            # spherical scenes, but there could be some weird edge cases when
            # the observer crosses from the inner to outer volume.
            ts = 1.0 / (1.0 / t0.clamp(epsilon) * (1.0 - ts) + 1.0 / t1.clamp(epsilon) * ts)

        mids = 0.5 * (ts[..., 1:] + ts[..., :-1])
        upper = torch.cat([mids, t1], dim=-1)
        lower = torch.cat([t0, mids], dim=-1)
        t_rand = torch.rand_like(ts)

        ts = lower + (upper - lower) * t_rand
        return ts.unsqueeze(-1)


class ImportanceRaySampler(RaySampler):
    """
    Given the initial estimate of densities, this samples more from
    regions/bins expected to have objects.
    """

    def __init__(
        self, volume_range: VolumeRange, raw: AttrDict, blur_pool: bool = False, alpha: float = 1e-5
    ):
        """
        :param volume_range: the range in which a ray intersects the given volume.
        :param raw: dictionary of raw outputs from the NeRF models of shape
            [batch_size, *shape, n_coarse_samples, 1]. Should at least contain

            :param ts: earlier samples from the coarse rendering step
            :param weights: discretized version of density * transmittance
        :param blur_pool: if true, use 2-tap max + 2-tap blur filter from mip-NeRF.
        :param alpha: small value to add to weights.
        """
        self.volume_range = volume_range
        self.ts = raw.ts.clone().detach()
        self.weights = raw.weights.clone().detach()
        self.blur_pool = blur_pool
        self.alpha = alpha

    @torch.no_grad()
    def sample(self, t0: torch.Tensor, t1: torch.Tensor, n_samples: int) -> torch.Tensor:
        """
        :param t0: start time has shape [batch_size, *shape, 1]
        :param t1: finish time has shape [batch_size, *shape, 1]
        :param n_samples: number of ts to sample
        :return: sampled ts of shape [batch_size, *shape, n_samples, 1]
        """
        lower, upper, _ = self.volume_range.partition(self.ts)

        batch_size, *shape, n_coarse_samples, _ = self.ts.shape

        weights = self.weights
        if self.blur_pool:
            padded = torch.cat([weights[..., :1, :], weights, weights[..., -1:, :]], dim=-2)
            maxes = torch.maximum(padded[..., :-1, :], padded[..., 1:, :])
            weights = 0.5 * (maxes[..., :-1, :] + maxes[..., 1:, :])
        weights = weights + self.alpha
        pmf = weights / weights.sum(dim=-2, keepdim=True)
        inds = sample_pmf(pmf, n_samples)
        assert inds.shape == (batch_size, *shape, n_samples, 1)
        assert (inds >= 0).all() and (inds < n_coarse_samples).all()

        t_rand = torch.rand(inds.shape, device=inds.device)
        lower_ = torch.gather(lower, -2, inds)
        upper_ = torch.gather(upper, -2, inds)

        ts = lower_ + (upper_ - lower_) * t_rand
        ts = torch.sort(ts, dim=-2).values
        return ts