File size: 5,218 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import random
from typing import Any, List, Optional, Union

import blobfile as bf
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image


def center_crop(
    img: Union[Image.Image, torch.Tensor, np.ndarray]
) -> Union[Image.Image, torch.Tensor, np.ndarray]:
    """
    Center crops an image.
    """
    if isinstance(img, (np.ndarray, torch.Tensor)):
        height, width = img.shape[:2]
    else:
        width, height = img.size
    size = min(width, height)
    left, top = (width - size) // 2, (height - size) // 2
    right, bottom = left + size, top + size
    if isinstance(img, (np.ndarray, torch.Tensor)):
        img = img[top:bottom, left:right]
    else:
        img = img.crop((left, top, right, bottom))
    return img


def resize(
    img: Union[Image.Image, torch.Tensor, np.ndarray],
    *,
    height: int,
    width: int,
    min_value: Optional[Any] = None,
    max_value: Optional[Any] = None,
) -> Union[Image.Image, torch.Tensor, np.ndarray]:
    """
    :param: img: image in HWC order
    :return: currently written for downsampling
    """

    orig, cls = img, type(img)
    if isinstance(img, Image.Image):
        img = np.array(img)
    dtype = img.dtype
    if isinstance(img, np.ndarray):
        img = torch.from_numpy(img)
    ndim = img.ndim
    if img.ndim == 2:
        img = img.unsqueeze(-1)

    if min_value is None and max_value is None:
        # .clamp throws an error when both are None
        min_value = -np.inf

    img = img.permute(2, 0, 1)
    size = (height, width)
    img = (
        F.interpolate(img[None].float(), size=size, mode="area")[0]
        .clamp(min_value, max_value)
        .to(img.dtype)
        .permute(1, 2, 0)
    )

    if ndim < img.ndim:
        img = img.squeeze(-1)
    if not isinstance(orig, torch.Tensor):
        img = img.numpy()
    img = img.astype(dtype)
    if isinstance(orig, Image.Image):
        img = Image.fromarray(img)

    return img


def get_alpha(img: Image.Image) -> Image.Image:
    """
    :return: the alpha channel separated out as a grayscale image
    """
    img_arr = np.asarray(img)
    if img_arr.shape[2] == 4:
        alpha = img_arr[:, :, 3]
    else:
        alpha = np.full(img_arr.shape[:2], 255, dtype=np.uint8)
    alpha = Image.fromarray(alpha)
    return alpha


def remove_alpha(img: Image.Image, mode: str = "random") -> Image.Image:
    """
    No op if the image doesn't have an alpha channel.

    :param: mode: Defaults to "random" but has an option to use a "black" or
        "white" background

    :return: image with alpha removed
    """
    img_arr = np.asarray(img)
    if img_arr.shape[2] == 4:
        # Add bg to get rid of alpha channel
        if mode == "random":
            height, width = img_arr.shape[:2]
            bg = Image.fromarray(
                random.choice([_black_bg, _gray_bg, _checker_bg, _noise_bg])(height, width)
            )
            bg.paste(img, mask=img)
            img = bg
        elif mode == "black" or mode == "white":
            img_arr = img_arr.astype(float)
            rgb, alpha = img_arr[:, :, :3], img_arr[:, :, -1:] / 255
            background = np.zeros((1, 1, 3)) if mode == "black" else np.full((1, 1, 3), 255)
            rgb = rgb * alpha + background * (1 - alpha)
            img = Image.fromarray(np.round(rgb).astype(np.uint8))
    return img


def _black_bg(h: int, w: int) -> np.ndarray:
    return np.zeros([h, w, 3], dtype=np.uint8)


def _gray_bg(h: int, w: int) -> np.ndarray:
    return (np.zeros([h, w, 3]) + np.random.randint(low=0, high=256)).astype(np.uint8)


def _checker_bg(h: int, w: int) -> np.ndarray:
    checker_size = np.ceil(np.exp(np.random.uniform() * np.log(min(h, w))))
    c1 = np.random.randint(low=0, high=256)
    c2 = np.random.randint(low=0, high=256)

    xs = np.arange(w)[None, :, None] + np.random.randint(low=0, high=checker_size + 1)
    ys = np.arange(h)[:, None, None] + np.random.randint(low=0, high=checker_size + 1)

    fields = np.logical_xor((xs // checker_size) % 2 == 0, (ys // checker_size) % 2 == 0)
    return np.where(fields, np.array([c1] * 3), np.array([c2] * 3)).astype(np.uint8)


def _noise_bg(h: int, w: int) -> np.ndarray:
    return np.random.randint(low=0, high=256, size=[h, w, 3]).astype(np.uint8)


def load_image(image_path: str) -> Image.Image:
    with bf.BlobFile(image_path, "rb") as thefile:
        img = Image.open(thefile)
        img.load()
    return img


def make_tile(images: List[Union[np.ndarray, Image.Image]], columns=8) -> Image.Image:
    """
    to test, run
        >>> display(make_tile([(np.zeros((128, 128, 3)) + c).astype(np.uint8) for c in np.linspace(0, 255, 15)]))
    """
    images = list(map(np.array, images))
    size = images[0].shape[0]
    n = round_up(len(images), columns)
    n_blanks = n - len(images)
    images.extend([np.zeros((size, size, 3), dtype=np.uint8)] * n_blanks)
    images = (
        np.array(images)
        .reshape(n // columns, columns, size, size, 3)
        .transpose([0, 2, 1, 3, 4])
        .reshape(n // columns * size, columns * size, 3)
    )
    return Image.fromarray(images)


def round_up(n: int, b: int) -> int:
    return (n + b - 1) // b * b