Spaces:
Runtime error
Runtime error
File size: 5,218 Bytes
19c4ddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import random
from typing import Any, List, Optional, Union
import blobfile as bf
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
def center_crop(
img: Union[Image.Image, torch.Tensor, np.ndarray]
) -> Union[Image.Image, torch.Tensor, np.ndarray]:
"""
Center crops an image.
"""
if isinstance(img, (np.ndarray, torch.Tensor)):
height, width = img.shape[:2]
else:
width, height = img.size
size = min(width, height)
left, top = (width - size) // 2, (height - size) // 2
right, bottom = left + size, top + size
if isinstance(img, (np.ndarray, torch.Tensor)):
img = img[top:bottom, left:right]
else:
img = img.crop((left, top, right, bottom))
return img
def resize(
img: Union[Image.Image, torch.Tensor, np.ndarray],
*,
height: int,
width: int,
min_value: Optional[Any] = None,
max_value: Optional[Any] = None,
) -> Union[Image.Image, torch.Tensor, np.ndarray]:
"""
:param: img: image in HWC order
:return: currently written for downsampling
"""
orig, cls = img, type(img)
if isinstance(img, Image.Image):
img = np.array(img)
dtype = img.dtype
if isinstance(img, np.ndarray):
img = torch.from_numpy(img)
ndim = img.ndim
if img.ndim == 2:
img = img.unsqueeze(-1)
if min_value is None and max_value is None:
# .clamp throws an error when both are None
min_value = -np.inf
img = img.permute(2, 0, 1)
size = (height, width)
img = (
F.interpolate(img[None].float(), size=size, mode="area")[0]
.clamp(min_value, max_value)
.to(img.dtype)
.permute(1, 2, 0)
)
if ndim < img.ndim:
img = img.squeeze(-1)
if not isinstance(orig, torch.Tensor):
img = img.numpy()
img = img.astype(dtype)
if isinstance(orig, Image.Image):
img = Image.fromarray(img)
return img
def get_alpha(img: Image.Image) -> Image.Image:
"""
:return: the alpha channel separated out as a grayscale image
"""
img_arr = np.asarray(img)
if img_arr.shape[2] == 4:
alpha = img_arr[:, :, 3]
else:
alpha = np.full(img_arr.shape[:2], 255, dtype=np.uint8)
alpha = Image.fromarray(alpha)
return alpha
def remove_alpha(img: Image.Image, mode: str = "random") -> Image.Image:
"""
No op if the image doesn't have an alpha channel.
:param: mode: Defaults to "random" but has an option to use a "black" or
"white" background
:return: image with alpha removed
"""
img_arr = np.asarray(img)
if img_arr.shape[2] == 4:
# Add bg to get rid of alpha channel
if mode == "random":
height, width = img_arr.shape[:2]
bg = Image.fromarray(
random.choice([_black_bg, _gray_bg, _checker_bg, _noise_bg])(height, width)
)
bg.paste(img, mask=img)
img = bg
elif mode == "black" or mode == "white":
img_arr = img_arr.astype(float)
rgb, alpha = img_arr[:, :, :3], img_arr[:, :, -1:] / 255
background = np.zeros((1, 1, 3)) if mode == "black" else np.full((1, 1, 3), 255)
rgb = rgb * alpha + background * (1 - alpha)
img = Image.fromarray(np.round(rgb).astype(np.uint8))
return img
def _black_bg(h: int, w: int) -> np.ndarray:
return np.zeros([h, w, 3], dtype=np.uint8)
def _gray_bg(h: int, w: int) -> np.ndarray:
return (np.zeros([h, w, 3]) + np.random.randint(low=0, high=256)).astype(np.uint8)
def _checker_bg(h: int, w: int) -> np.ndarray:
checker_size = np.ceil(np.exp(np.random.uniform() * np.log(min(h, w))))
c1 = np.random.randint(low=0, high=256)
c2 = np.random.randint(low=0, high=256)
xs = np.arange(w)[None, :, None] + np.random.randint(low=0, high=checker_size + 1)
ys = np.arange(h)[:, None, None] + np.random.randint(low=0, high=checker_size + 1)
fields = np.logical_xor((xs // checker_size) % 2 == 0, (ys // checker_size) % 2 == 0)
return np.where(fields, np.array([c1] * 3), np.array([c2] * 3)).astype(np.uint8)
def _noise_bg(h: int, w: int) -> np.ndarray:
return np.random.randint(low=0, high=256, size=[h, w, 3]).astype(np.uint8)
def load_image(image_path: str) -> Image.Image:
with bf.BlobFile(image_path, "rb") as thefile:
img = Image.open(thefile)
img.load()
return img
def make_tile(images: List[Union[np.ndarray, Image.Image]], columns=8) -> Image.Image:
"""
to test, run
>>> display(make_tile([(np.zeros((128, 128, 3)) + c).astype(np.uint8) for c in np.linspace(0, 255, 15)]))
"""
images = list(map(np.array, images))
size = images[0].shape[0]
n = round_up(len(images), columns)
n_blanks = n - len(images)
images.extend([np.zeros((size, size, 3), dtype=np.uint8)] * n_blanks)
images = (
np.array(images)
.reshape(n // columns, columns, size, size, 3)
.transpose([0, 2, 1, 3, 4])
.reshape(n // columns * size, columns * size, 3)
)
return Image.fromarray(images)
def round_up(n: int, b: int) -> int:
return (n + b - 1) // b * b
|