File size: 16,793 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
from abc import abstractmethod
from typing import Callable, Dict, List, Optional, Tuple

import numpy as np
import torch

from shap_e.models.nn.camera import (
    DifferentiableCamera,
    DifferentiableProjectiveCamera,
    get_image_coords,
    projective_camera_frame,
)
from shap_e.models.nn.meta import MetaModule
from shap_e.util.collections import AttrDict


class Renderer(MetaModule):
    """
    A rendering abstraction that can render rays and views by calling the
    appropriate models. The models are instantiated outside but registered in
    this module.
    """

    @abstractmethod
    def render_views(
        self,
        batch: AttrDict,
        params: Optional[Dict] = None,
        options: Optional[Dict] = None,
    ) -> AttrDict:
        """
        Returns a backproppable rendering of a view

        :param batch: contains
            - height: Optional[int]
            - width: Optional[int]
            - inner_batch_size or ray_batch_size: Optional[int] defaults to 4096 rays

            And additionally, to specify poses with a default up direction:
            - poses: [batch_size x *shape x 2 x 3] where poses[:, ..., 0, :] are the camera
                positions, and poses[:, ..., 1, :] are the z-axis (toward the object) of
                the camera frame.
            - camera: DifferentiableCamera. Assumes the same camera position
                across batch for simplicity.  Could eventually support
                batched cameras.

            or to specify a batch of arbitrary poses:
            - cameras: DifferentiableCameraBatch of shape [batch_size x *shape].

        :param params: Meta parameters
        :param options: Optional[Dict]
        """


class RayRenderer(Renderer):
    """
    A rendering abstraction that can render rays and views by calling the
    appropriate models. The models are instantiated outside but registered in
    this module.
    """

    @abstractmethod
    def render_rays(
        self,
        batch: AttrDict,
        params: Optional[Dict] = None,
        options: Optional[Dict] = None,
    ) -> AttrDict:
        """
        :param batch: has
            - rays: [batch_size x ... x 2 x 3] specify the origin and direction of each ray.
            - radii (optional): [batch_size x ... x 1] the "thickness" of each ray.
        :param options: Optional[Dict]
        """

    def render_views(
        self,
        batch: AttrDict,
        params: Optional[Dict] = None,
        options: Optional[Dict] = None,
        device: torch.device = torch.device("cuda"),
    ) -> AttrDict:
        output = render_views_from_rays(
            self.render_rays,
            batch,
            params=params,
            options=options,
            device=self.device,
        )
        return output

    def forward(
        self,
        batch: AttrDict,
        params: Optional[Dict] = None,
        options: Optional[Dict] = None,
    ) -> AttrDict:
        """
        :param batch: must contain either

            - rays: [batch_size x ... x 2 x 3] specify the origin and direction of each ray.

            or

            - poses: [batch_size x 2 x 3] where poses[:, 0] are the camera
                positions, and poses[:, 1] are the z-axis (toward the object) of
                the camera frame.
            - camera: an instance of Camera that implements camera_rays

            or

            - cameras: DifferentiableCameraBatch of shape [batch_size x *shape].

            For both of the above two options, these may be specified.
            - height: Optional[int]
            - width: Optional[int]
            - ray_batch_size or inner_batch_size: Optional[int] defaults to 4096 rays

        :param params: a dictionary of optional meta parameters.
        :param options: A Dict of other hyperparameters that could be
            related to rendering or debugging

        :return: a dictionary containing

            - channels: [batch_size, *shape, n_channels]
            - distances: [batch_size, *shape, 1]
            - transmittance: [batch_size, *shape, 1]
            - aux_losses: Dict[str, torch.Tensor]
        """

        if "rays" in batch:
            for key in ["poses", "camera", "height", "width"]:
                assert key not in batch
            return self.render_rays(batch, params=params, options=options)
        elif "poses" in batch or "cameras" in batch:
            assert "rays" not in batch
            if "poses" in batch:
                assert "camera" in batch
            else:
                assert "camera" not in batch
            return self.render_views(batch, params=params, options=options)

        raise NotImplementedError


def get_camera_from_batch(batch: AttrDict) -> Tuple[DifferentiableCamera, int, Tuple[int]]:
    if "poses" in batch:
        assert not "cameras" in batch
        batch_size, *inner_shape, n_vecs, spatial_dim = batch.poses.shape
        assert n_vecs == 2 and spatial_dim == 3
        inner_batch_size = int(np.prod(inner_shape))
        poses = batch.poses.view(batch_size * inner_batch_size, 2, 3)
        position, direction = poses[:, 0], poses[:, 1]
        camera = projective_camera_frame(position, direction, batch.camera)
    elif "cameras" in batch:
        assert not "camera" in batch
        batch_size, *inner_shape = batch.cameras.shape
        camera = batch.cameras.flat_camera
    else:
        raise ValueError(f'neither "poses" nor "cameras" found in keys: {batch.keys()}')
    if "height" in batch and "width" in batch:
        camera = camera.resize_image(batch.width, batch.height)
    return camera, batch_size, inner_shape


def append_tensor(val_list: Optional[List[torch.Tensor]], output: Optional[torch.Tensor]):
    if val_list is None:
        return [output]
    return val_list + [output]


def render_views_from_rays(
    render_rays: Callable[[AttrDict, AttrDict, AttrDict], AttrDict],
    batch: AttrDict,
    params: Optional[Dict] = None,
    options: Optional[Dict] = None,
    device: torch.device = torch.device("cuda"),
    patch_size: Optional[int] = 128,
    use_patch: bool = False,
) -> AttrDict:
    # import pdb; pdb.set_trace()
    camera, batch_size, inner_shape = get_camera_from_batch(batch)
    inner_batch_size = int(np.prod(inner_shape))

    coords = get_image_coords(camera.width, camera.height).to(device)
    coords = torch.broadcast_to(coords.unsqueeze(0), [batch_size * inner_batch_size, *coords.shape])
    rays = camera.camera_rays(coords)

    # mip-NeRF radii calculation from: https://github.com/google/mipnerf/blob/84c969e0a623edd183b75693aed72a7e7c22902d/internal/datasets.py#L193-L200
    directions = rays.view(batch_size, inner_batch_size, camera.height, camera.width, 2, 3)[
        ..., 1, :
    ]
    neighbor_dists = torch.linalg.norm(directions[:, :, :, 1:] - directions[:, :, :, :-1], dim=-1)
    neighbor_dists = torch.cat([neighbor_dists, neighbor_dists[:, :, :, -2:-1]], dim=3)
    radii = (neighbor_dists * 2 / np.sqrt(12)).view(batch_size, -1, 1)
    # do the patching
    if use_patch:
        print("use_patch")
        assert patch_size < camera.height
        H, W = camera.height, camera.width
        # import pdb; pdb.set_trace()
        down_scale_factor = min(H // patch_size, 4)
        rays = rays.view(batch_size*inner_batch_size, camera.height, camera.width, 2, 3)
        rays_o = rays[..., 0, :]
        rays_d = rays[..., 1, :]
        global_rays_o = torch.nn.functional.interpolate(rays_o.permute(0, 3, 1, 2),
                                                        (H // down_scale_factor, W // down_scale_factor),
                                                        mode="bilinear").permute(0, 2, 3, 1)
        global_rays_d = torch.nn.functional.interpolate(rays_d.permute(0, 3, 1, 2),
                                                        (H // down_scale_factor, W // down_scale_factor),
                                                        mode="bilinear").permute(0, 2, 3, 1)
        global_rays = torch.stack([global_rays_o, global_rays_d], dim=-2)

        global_rays = global_rays.view(batch_size, inner_batch_size * camera.height * camera.width // (down_scale_factor **2) , 2, 3)



        # rays = rays.view(batch_size, inner_batch_size * camera.height * camera.width, 2, 3)

        if isinstance(camera, DifferentiableProjectiveCamera):
            # Compute the camera z direction corresponding to every ray's pixel.
            # Used for depth computations below.
            z_directions = (
                (camera.z / torch.linalg.norm(camera.z, dim=-1, keepdim=True))
                .reshape([batch_size, inner_batch_size, 1, 3])
                .repeat(1, 1, camera.width * camera.height // down_scale_factor **2 , 1)
                .reshape(1, inner_batch_size * camera.height * camera.width // down_scale_factor ** 2, 3)
            )

        ray_batch_size = batch.get("ray_batch_size", batch.get("inner_batch_size", 1024))

        assert global_rays.shape[1] % ray_batch_size == 0
        n_batches = global_rays.shape[1] // ray_batch_size

        output_list_global = AttrDict(aux_losses=dict())
        for idx in range(n_batches):
            rays_batch = AttrDict(
                rays=global_rays[:, idx * ray_batch_size: (idx + 1) * ray_batch_size],
                radii=global_rays[:, idx * ray_batch_size: (idx + 1) * ray_batch_size],
            )
            output_global = render_rays(rays_batch, params=params, options=options)

            # output.channels.register_hook(lambda grad: print("render_rays", grad))

            if isinstance(camera, DifferentiableProjectiveCamera):
                z_batch = z_directions[:, idx * ray_batch_size: (idx + 1) * ray_batch_size]
                ray_directions = rays_batch.rays[:, :, 1]
                z_dots = (ray_directions * z_batch).sum(-1, keepdim=True)
                output_global.depth = output_global.distances * z_dots

            output_list_global = output_list_global.combine(output_global, append_tensor)

        PS = patch_size
        patch_x = torch.randint(0, W - PS, (1,)).item()
        patch_y = torch.randint(0, H - PS, (1,)).item()

        patch_rays = rays[..., patch_y: patch_y + PS, patch_x: patch_x + PS, :, :]
        patch_rays = patch_rays.reshape(batch_size, inner_batch_size * PS * PS , 2, 3)

        if isinstance(camera, DifferentiableProjectiveCamera):
            # Compute the camera z direction corresponding to every ray's pixel.
            # Used for depth computations below.
            z_directions_patch = (
                (camera.z / torch.linalg.norm(camera.z, dim=-1, keepdim=True))
                .reshape([batch_size, inner_batch_size, 1, 3])
                .repeat(1, 1, PS * PS , 1)
                .reshape(1, inner_batch_size * PS * PS, 3)
            )

        # ray_batch_size = batch.get("ray_batch_size", batch.get("inner_batch_size", 4096))
        print(ray_batch_size, patch_rays.shape[1])
        assert patch_rays.shape[1] % ray_batch_size == 0
        n_batches = patch_rays.shape[1] // ray_batch_size

        output_list = AttrDict(aux_losses=dict())
        for idx in range(n_batches):
            rays_batch = AttrDict(
                rays=patch_rays[:, idx * ray_batch_size: (idx + 1) * ray_batch_size],
                radii=patch_rays[:, idx * ray_batch_size: (idx + 1) * ray_batch_size],
            )
            output_patch = render_rays(rays_batch, params=params, options=options)

            # output.channels.register_hook(lambda grad: print("render_rays", grad))

            if isinstance(camera, DifferentiableProjectiveCamera):
                z_batch = z_directions_patch[:, idx * ray_batch_size: (idx + 1) * ray_batch_size]
                ray_directions = rays_batch.rays[:, :, 1]
                z_dots = (ray_directions * z_batch).sum(-1, keepdim=True)
                output_patch.depth = output_patch.distances * z_dots

            output_list = output_list.combine(output_patch, append_tensor)
        def _resize(val_list: List[torch.Tensor], H, W):
            val = torch.cat(val_list, dim=1)
            assert val.shape[1] == inner_batch_size * H * W
            return val.view(batch_size, *inner_shape, H, W, -1)

        def _avg(_key: str, loss_list: List[torch.Tensor]):
            return sum(loss_list) / n_batches

        output_global = AttrDict(
            {name: _resize(val_list, camera.width // down_scale_factor, camera.height // down_scale_factor) for name, val_list in output_list_global.items() if name != "aux_losses"}
        )
        output_global.aux_losses = output_list_global.aux_losses.map(_avg)

        output = AttrDict(
            {name: _resize(val_list, PS, PS) for name, val_list in output_list.items() if name != "aux_losses"}
        )
        output.aux_losses = output_list.aux_losses.map(_avg)



        valid_patch_key = []
        for key in output:
            if torch.is_tensor(output[key]):
                print(key, output[key].shape, output["channels"].shape)
                if len(output[key].shape) == len(output["channels"].shape):
                    if output[key][..., 0].shape == output["channels"][..., 0].shape:
                        valid_patch_key.append(key)
        # import pdb; pdb.set_trace()
        for key in valid_patch_key:
            if output_global[key].dtype != torch.bool:
                output_global[key] = torch.nn.functional.interpolate(
                    output_global[key].view(inner_batch_size*batch_size, camera.width // down_scale_factor, camera.height //down_scale_factor, -1).permute(0, 3, 1, 2), (H, W), mode="bilinear"
                ).permute(0, 2, 3, 1).view(batch_size, inner_batch_size, H, W, -1)
            else:
                output_global[key] = torch.nn.functional.interpolate(
                    output_global[key].view(inner_batch_size*batch_size, camera.width // down_scale_factor, camera.height //down_scale_factor, -1).permute(0, 3, 1, 2).to(torch.float32), (H, W), mode="nearest"
                ).permute(0, 2, 3, 1).view(batch_size, inner_batch_size, H, W, -1).to(torch.bool)
            output_global[key] = output_global[key].detach()
            output_global[key][
            ..., patch_y: patch_y + PS, patch_x: patch_x + PS, :
            ] = output[key]
        output = output_global


        return output

    else:
        rays = rays.view(batch_size, inner_batch_size * camera.height * camera.width, 2, 3)

        if isinstance(camera, DifferentiableProjectiveCamera):
            # Compute the camera z direction corresponding to every ray's pixel.
            # Used for depth computations below.
            z_directions = (
                (camera.z / torch.linalg.norm(camera.z, dim=-1, keepdim=True))
                .reshape([batch_size, inner_batch_size, 1, 3])
                .repeat(1, 1, camera.width * camera.height, 1)
                .reshape(1, inner_batch_size * camera.height * camera.width, 3)
            )

        ray_batch_size = batch.get("ray_batch_size", batch.get("inner_batch_size", 4096))
        assert rays.shape[1] % ray_batch_size == 0
        n_batches = rays.shape[1] // ray_batch_size

        output_list = AttrDict(aux_losses=dict())
        for idx in range(n_batches):
            rays_batch = AttrDict(
                rays=rays[:, idx * ray_batch_size : (idx + 1) * ray_batch_size],
                radii=radii[:, idx * ray_batch_size : (idx + 1) * ray_batch_size],
            )
            output = render_rays(rays_batch, params=params, options=options)

            # output.channels.register_hook(lambda grad: print("render_rays", grad))

            if isinstance(camera, DifferentiableProjectiveCamera):
                z_batch = z_directions[:, idx * ray_batch_size : (idx + 1) * ray_batch_size]
                ray_directions = rays_batch.rays[:, :, 1]
                z_dots = (ray_directions * z_batch).sum(-1, keepdim=True)
                output.depth = output.distances * z_dots

            output_list = output_list.combine(output, append_tensor)
    # for key in params:
    #     if params[key].requires_grad:
    #         params[key].register_hook(lambda grad: print("params", key, grad))
        def _resize(val_list: List[torch.Tensor]):
            val = torch.cat(val_list, dim=1)
            assert val.shape[1] == inner_batch_size * camera.height * camera.width
            return val.view(batch_size, *inner_shape, camera.height, camera.width, -1)

        def _avg(_key: str, loss_list: List[torch.Tensor]):
            return sum(loss_list) / n_batches

        output = AttrDict(
            {name: _resize(val_list) for name, val_list in output_list.items() if name != "aux_losses"}
        )
        output.aux_losses = output_list.aux_losses.map(_avg)
        return output