Spaces:
Runtime error
Runtime error
File size: 16,793 Bytes
19c4ddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
from abc import abstractmethod
from typing import Callable, Dict, List, Optional, Tuple
import numpy as np
import torch
from shap_e.models.nn.camera import (
DifferentiableCamera,
DifferentiableProjectiveCamera,
get_image_coords,
projective_camera_frame,
)
from shap_e.models.nn.meta import MetaModule
from shap_e.util.collections import AttrDict
class Renderer(MetaModule):
"""
A rendering abstraction that can render rays and views by calling the
appropriate models. The models are instantiated outside but registered in
this module.
"""
@abstractmethod
def render_views(
self,
batch: AttrDict,
params: Optional[Dict] = None,
options: Optional[Dict] = None,
) -> AttrDict:
"""
Returns a backproppable rendering of a view
:param batch: contains
- height: Optional[int]
- width: Optional[int]
- inner_batch_size or ray_batch_size: Optional[int] defaults to 4096 rays
And additionally, to specify poses with a default up direction:
- poses: [batch_size x *shape x 2 x 3] where poses[:, ..., 0, :] are the camera
positions, and poses[:, ..., 1, :] are the z-axis (toward the object) of
the camera frame.
- camera: DifferentiableCamera. Assumes the same camera position
across batch for simplicity. Could eventually support
batched cameras.
or to specify a batch of arbitrary poses:
- cameras: DifferentiableCameraBatch of shape [batch_size x *shape].
:param params: Meta parameters
:param options: Optional[Dict]
"""
class RayRenderer(Renderer):
"""
A rendering abstraction that can render rays and views by calling the
appropriate models. The models are instantiated outside but registered in
this module.
"""
@abstractmethod
def render_rays(
self,
batch: AttrDict,
params: Optional[Dict] = None,
options: Optional[Dict] = None,
) -> AttrDict:
"""
:param batch: has
- rays: [batch_size x ... x 2 x 3] specify the origin and direction of each ray.
- radii (optional): [batch_size x ... x 1] the "thickness" of each ray.
:param options: Optional[Dict]
"""
def render_views(
self,
batch: AttrDict,
params: Optional[Dict] = None,
options: Optional[Dict] = None,
device: torch.device = torch.device("cuda"),
) -> AttrDict:
output = render_views_from_rays(
self.render_rays,
batch,
params=params,
options=options,
device=self.device,
)
return output
def forward(
self,
batch: AttrDict,
params: Optional[Dict] = None,
options: Optional[Dict] = None,
) -> AttrDict:
"""
:param batch: must contain either
- rays: [batch_size x ... x 2 x 3] specify the origin and direction of each ray.
or
- poses: [batch_size x 2 x 3] where poses[:, 0] are the camera
positions, and poses[:, 1] are the z-axis (toward the object) of
the camera frame.
- camera: an instance of Camera that implements camera_rays
or
- cameras: DifferentiableCameraBatch of shape [batch_size x *shape].
For both of the above two options, these may be specified.
- height: Optional[int]
- width: Optional[int]
- ray_batch_size or inner_batch_size: Optional[int] defaults to 4096 rays
:param params: a dictionary of optional meta parameters.
:param options: A Dict of other hyperparameters that could be
related to rendering or debugging
:return: a dictionary containing
- channels: [batch_size, *shape, n_channels]
- distances: [batch_size, *shape, 1]
- transmittance: [batch_size, *shape, 1]
- aux_losses: Dict[str, torch.Tensor]
"""
if "rays" in batch:
for key in ["poses", "camera", "height", "width"]:
assert key not in batch
return self.render_rays(batch, params=params, options=options)
elif "poses" in batch or "cameras" in batch:
assert "rays" not in batch
if "poses" in batch:
assert "camera" in batch
else:
assert "camera" not in batch
return self.render_views(batch, params=params, options=options)
raise NotImplementedError
def get_camera_from_batch(batch: AttrDict) -> Tuple[DifferentiableCamera, int, Tuple[int]]:
if "poses" in batch:
assert not "cameras" in batch
batch_size, *inner_shape, n_vecs, spatial_dim = batch.poses.shape
assert n_vecs == 2 and spatial_dim == 3
inner_batch_size = int(np.prod(inner_shape))
poses = batch.poses.view(batch_size * inner_batch_size, 2, 3)
position, direction = poses[:, 0], poses[:, 1]
camera = projective_camera_frame(position, direction, batch.camera)
elif "cameras" in batch:
assert not "camera" in batch
batch_size, *inner_shape = batch.cameras.shape
camera = batch.cameras.flat_camera
else:
raise ValueError(f'neither "poses" nor "cameras" found in keys: {batch.keys()}')
if "height" in batch and "width" in batch:
camera = camera.resize_image(batch.width, batch.height)
return camera, batch_size, inner_shape
def append_tensor(val_list: Optional[List[torch.Tensor]], output: Optional[torch.Tensor]):
if val_list is None:
return [output]
return val_list + [output]
def render_views_from_rays(
render_rays: Callable[[AttrDict, AttrDict, AttrDict], AttrDict],
batch: AttrDict,
params: Optional[Dict] = None,
options: Optional[Dict] = None,
device: torch.device = torch.device("cuda"),
patch_size: Optional[int] = 128,
use_patch: bool = False,
) -> AttrDict:
# import pdb; pdb.set_trace()
camera, batch_size, inner_shape = get_camera_from_batch(batch)
inner_batch_size = int(np.prod(inner_shape))
coords = get_image_coords(camera.width, camera.height).to(device)
coords = torch.broadcast_to(coords.unsqueeze(0), [batch_size * inner_batch_size, *coords.shape])
rays = camera.camera_rays(coords)
# mip-NeRF radii calculation from: https://github.com/google/mipnerf/blob/84c969e0a623edd183b75693aed72a7e7c22902d/internal/datasets.py#L193-L200
directions = rays.view(batch_size, inner_batch_size, camera.height, camera.width, 2, 3)[
..., 1, :
]
neighbor_dists = torch.linalg.norm(directions[:, :, :, 1:] - directions[:, :, :, :-1], dim=-1)
neighbor_dists = torch.cat([neighbor_dists, neighbor_dists[:, :, :, -2:-1]], dim=3)
radii = (neighbor_dists * 2 / np.sqrt(12)).view(batch_size, -1, 1)
# do the patching
if use_patch:
print("use_patch")
assert patch_size < camera.height
H, W = camera.height, camera.width
# import pdb; pdb.set_trace()
down_scale_factor = min(H // patch_size, 4)
rays = rays.view(batch_size*inner_batch_size, camera.height, camera.width, 2, 3)
rays_o = rays[..., 0, :]
rays_d = rays[..., 1, :]
global_rays_o = torch.nn.functional.interpolate(rays_o.permute(0, 3, 1, 2),
(H // down_scale_factor, W // down_scale_factor),
mode="bilinear").permute(0, 2, 3, 1)
global_rays_d = torch.nn.functional.interpolate(rays_d.permute(0, 3, 1, 2),
(H // down_scale_factor, W // down_scale_factor),
mode="bilinear").permute(0, 2, 3, 1)
global_rays = torch.stack([global_rays_o, global_rays_d], dim=-2)
global_rays = global_rays.view(batch_size, inner_batch_size * camera.height * camera.width // (down_scale_factor **2) , 2, 3)
# rays = rays.view(batch_size, inner_batch_size * camera.height * camera.width, 2, 3)
if isinstance(camera, DifferentiableProjectiveCamera):
# Compute the camera z direction corresponding to every ray's pixel.
# Used for depth computations below.
z_directions = (
(camera.z / torch.linalg.norm(camera.z, dim=-1, keepdim=True))
.reshape([batch_size, inner_batch_size, 1, 3])
.repeat(1, 1, camera.width * camera.height // down_scale_factor **2 , 1)
.reshape(1, inner_batch_size * camera.height * camera.width // down_scale_factor ** 2, 3)
)
ray_batch_size = batch.get("ray_batch_size", batch.get("inner_batch_size", 1024))
assert global_rays.shape[1] % ray_batch_size == 0
n_batches = global_rays.shape[1] // ray_batch_size
output_list_global = AttrDict(aux_losses=dict())
for idx in range(n_batches):
rays_batch = AttrDict(
rays=global_rays[:, idx * ray_batch_size: (idx + 1) * ray_batch_size],
radii=global_rays[:, idx * ray_batch_size: (idx + 1) * ray_batch_size],
)
output_global = render_rays(rays_batch, params=params, options=options)
# output.channels.register_hook(lambda grad: print("render_rays", grad))
if isinstance(camera, DifferentiableProjectiveCamera):
z_batch = z_directions[:, idx * ray_batch_size: (idx + 1) * ray_batch_size]
ray_directions = rays_batch.rays[:, :, 1]
z_dots = (ray_directions * z_batch).sum(-1, keepdim=True)
output_global.depth = output_global.distances * z_dots
output_list_global = output_list_global.combine(output_global, append_tensor)
PS = patch_size
patch_x = torch.randint(0, W - PS, (1,)).item()
patch_y = torch.randint(0, H - PS, (1,)).item()
patch_rays = rays[..., patch_y: patch_y + PS, patch_x: patch_x + PS, :, :]
patch_rays = patch_rays.reshape(batch_size, inner_batch_size * PS * PS , 2, 3)
if isinstance(camera, DifferentiableProjectiveCamera):
# Compute the camera z direction corresponding to every ray's pixel.
# Used for depth computations below.
z_directions_patch = (
(camera.z / torch.linalg.norm(camera.z, dim=-1, keepdim=True))
.reshape([batch_size, inner_batch_size, 1, 3])
.repeat(1, 1, PS * PS , 1)
.reshape(1, inner_batch_size * PS * PS, 3)
)
# ray_batch_size = batch.get("ray_batch_size", batch.get("inner_batch_size", 4096))
print(ray_batch_size, patch_rays.shape[1])
assert patch_rays.shape[1] % ray_batch_size == 0
n_batches = patch_rays.shape[1] // ray_batch_size
output_list = AttrDict(aux_losses=dict())
for idx in range(n_batches):
rays_batch = AttrDict(
rays=patch_rays[:, idx * ray_batch_size: (idx + 1) * ray_batch_size],
radii=patch_rays[:, idx * ray_batch_size: (idx + 1) * ray_batch_size],
)
output_patch = render_rays(rays_batch, params=params, options=options)
# output.channels.register_hook(lambda grad: print("render_rays", grad))
if isinstance(camera, DifferentiableProjectiveCamera):
z_batch = z_directions_patch[:, idx * ray_batch_size: (idx + 1) * ray_batch_size]
ray_directions = rays_batch.rays[:, :, 1]
z_dots = (ray_directions * z_batch).sum(-1, keepdim=True)
output_patch.depth = output_patch.distances * z_dots
output_list = output_list.combine(output_patch, append_tensor)
def _resize(val_list: List[torch.Tensor], H, W):
val = torch.cat(val_list, dim=1)
assert val.shape[1] == inner_batch_size * H * W
return val.view(batch_size, *inner_shape, H, W, -1)
def _avg(_key: str, loss_list: List[torch.Tensor]):
return sum(loss_list) / n_batches
output_global = AttrDict(
{name: _resize(val_list, camera.width // down_scale_factor, camera.height // down_scale_factor) for name, val_list in output_list_global.items() if name != "aux_losses"}
)
output_global.aux_losses = output_list_global.aux_losses.map(_avg)
output = AttrDict(
{name: _resize(val_list, PS, PS) for name, val_list in output_list.items() if name != "aux_losses"}
)
output.aux_losses = output_list.aux_losses.map(_avg)
valid_patch_key = []
for key in output:
if torch.is_tensor(output[key]):
print(key, output[key].shape, output["channels"].shape)
if len(output[key].shape) == len(output["channels"].shape):
if output[key][..., 0].shape == output["channels"][..., 0].shape:
valid_patch_key.append(key)
# import pdb; pdb.set_trace()
for key in valid_patch_key:
if output_global[key].dtype != torch.bool:
output_global[key] = torch.nn.functional.interpolate(
output_global[key].view(inner_batch_size*batch_size, camera.width // down_scale_factor, camera.height //down_scale_factor, -1).permute(0, 3, 1, 2), (H, W), mode="bilinear"
).permute(0, 2, 3, 1).view(batch_size, inner_batch_size, H, W, -1)
else:
output_global[key] = torch.nn.functional.interpolate(
output_global[key].view(inner_batch_size*batch_size, camera.width // down_scale_factor, camera.height //down_scale_factor, -1).permute(0, 3, 1, 2).to(torch.float32), (H, W), mode="nearest"
).permute(0, 2, 3, 1).view(batch_size, inner_batch_size, H, W, -1).to(torch.bool)
output_global[key] = output_global[key].detach()
output_global[key][
..., patch_y: patch_y + PS, patch_x: patch_x + PS, :
] = output[key]
output = output_global
return output
else:
rays = rays.view(batch_size, inner_batch_size * camera.height * camera.width, 2, 3)
if isinstance(camera, DifferentiableProjectiveCamera):
# Compute the camera z direction corresponding to every ray's pixel.
# Used for depth computations below.
z_directions = (
(camera.z / torch.linalg.norm(camera.z, dim=-1, keepdim=True))
.reshape([batch_size, inner_batch_size, 1, 3])
.repeat(1, 1, camera.width * camera.height, 1)
.reshape(1, inner_batch_size * camera.height * camera.width, 3)
)
ray_batch_size = batch.get("ray_batch_size", batch.get("inner_batch_size", 4096))
assert rays.shape[1] % ray_batch_size == 0
n_batches = rays.shape[1] // ray_batch_size
output_list = AttrDict(aux_losses=dict())
for idx in range(n_batches):
rays_batch = AttrDict(
rays=rays[:, idx * ray_batch_size : (idx + 1) * ray_batch_size],
radii=radii[:, idx * ray_batch_size : (idx + 1) * ray_batch_size],
)
output = render_rays(rays_batch, params=params, options=options)
# output.channels.register_hook(lambda grad: print("render_rays", grad))
if isinstance(camera, DifferentiableProjectiveCamera):
z_batch = z_directions[:, idx * ray_batch_size : (idx + 1) * ray_batch_size]
ray_directions = rays_batch.rays[:, :, 1]
z_dots = (ray_directions * z_batch).sum(-1, keepdim=True)
output.depth = output.distances * z_dots
output_list = output_list.combine(output, append_tensor)
# for key in params:
# if params[key].requires_grad:
# params[key].register_hook(lambda grad: print("params", key, grad))
def _resize(val_list: List[torch.Tensor]):
val = torch.cat(val_list, dim=1)
assert val.shape[1] == inner_batch_size * camera.height * camera.width
return val.view(batch_size, *inner_shape, camera.height, camera.width, -1)
def _avg(_key: str, loss_list: List[torch.Tensor]):
return sum(loss_list) / n_batches
output = AttrDict(
{name: _resize(val_list) for name, val_list in output_list.items() if name != "aux_losses"}
)
output.aux_losses = output_list.aux_losses.map(_avg)
return output
|