Spaces:
Runtime error
Runtime error
File size: 8,179 Bytes
19c4ddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
"""
Meta-learning modules based on: https://github.com/tristandeleu/pytorch-meta
MIT License
Copyright (c) 2019-2020 Tristan Deleu
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import itertools
import re
from collections import OrderedDict
import torch.nn as nn
from shap_e.util.collections import AttrDict
__all__ = [
"MetaModule",
"subdict",
"superdict",
"leveldict",
"leveliter",
"batch_meta_parameters",
"batch_meta_state_dict",
]
def subdict(dictionary, key=None):
if dictionary is None:
return None
if (key is None) or (key == ""):
return dictionary
key_re = re.compile(r"^{0}\.(.+)".format(re.escape(key)))
return AttrDict(
OrderedDict(
(key_re.sub(r"\1", k), value)
for (k, value) in dictionary.items()
if key_re.match(k) is not None
)
)
def superdict(dictionary, key=None):
if dictionary is None:
return None
if (key is None) or (key == ""):
return dictionary
return AttrDict(OrderedDict((key + "." + k, value) for (k, value) in dictionary.items()))
def leveldict(dictionary, depth=0):
return AttrDict(leveliter(dictionary, depth=depth))
def leveliter(dictionary, depth=0):
"""
depth == 0 is root
"""
for key, value in dictionary.items():
if key.count(".") == depth:
yield key, value
class MetaModule(nn.Module):
"""
Base class for PyTorch meta-learning modules. These modules accept an
additional argument `params` in their `forward` method.
Notes
-----
Objects inherited from `MetaModule` are fully compatible with PyTorch
modules from `torch.nn.Module`. The argument `params` is a dictionary of
tensors, with full support of the computation graph (for differentiation).
Based on SIREN's torchmeta with some additional features/changes.
All meta weights must not have the batch dimension, as they are later tiled
to the given batch size after unsqueezing the first dimension (e.g. a
weight of dimension [d_out x d_in] is tiled to have the dimension [batch x
d_out x d_in]). Requiring all meta weights to have a batch dimension of 1
(e.g. [1 x d_out x d_in] from the earlier example) could be a more natural
choice, but this results in silent failures.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._meta_state_dict = set()
self._meta_params = set()
def register_meta_buffer(self, name: str, param: nn.Parameter):
"""
Registers a trainable or nontrainable parameter as a meta buffer. This
can be later retrieved by meta_state_dict
"""
self.register_buffer(name, param)
self._meta_state_dict.add(name)
def register_meta_parameter(self, name: str, parameter: nn.Parameter):
"""
Registers a meta parameter so it is included in named_meta_parameters
and meta_state_dict.
"""
self.register_parameter(name, parameter)
self._meta_params.add(name)
self._meta_state_dict.add(name)
def register_meta(self, name: str, parameter: nn.Parameter, trainable: bool = True):
if trainable:
self.register_meta_parameter(name, parameter)
else:
self.register_meta_buffer(name, parameter)
def register(self, name: str, parameter: nn.Parameter, meta: bool, trainable: bool = True):
if meta:
if trainable:
self.register_meta_parameter(name, parameter)
else:
self.register_meta_buffer(name, parameter)
else:
if trainable:
self.register_parameter(name, parameter)
else:
self.register_buffer(name, parameter)
def named_meta_parameters(self, prefix="", recurse=True):
"""
Returns an iterator over all the names and meta parameters
"""
def meta_iterator(module):
meta = module._meta_params if isinstance(module, MetaModule) else set()
for name, param in module._parameters.items():
if name in meta:
yield name, param
gen = self._named_members(
meta_iterator,
prefix=prefix,
recurse=recurse,
)
for name, param in gen:
yield name, param
def named_nonmeta_parameters(self, prefix="", recurse=True):
def _iterator(module):
meta = module._meta_params if isinstance(module, MetaModule) else set()
for name, param in module._parameters.items():
if name not in meta:
yield name, param
gen = self._named_members(
_iterator,
prefix=prefix,
recurse=recurse,
)
for name, param in gen:
yield name, param
def nonmeta_parameters(self, prefix="", recurse=True):
for _, param in self.named_nonmeta_parameters(prefix=prefix, recurse=recurse):
yield param
def meta_state_dict(self, prefix="", recurse=True):
"""
Returns an iterator over all the names and meta parameters/buffers.
One difference between module.state_dict() is that this preserves
requires_grad, because we may want to compute the gradient w.r.t. meta
buffers, but don't necessarily update them automatically.
"""
def meta_iterator(module):
meta = module._meta_state_dict if isinstance(module, MetaModule) else set()
for name, param in itertools.chain(module._buffers.items(), module._parameters.items()):
if name in meta:
yield name, param
gen = self._named_members(
meta_iterator,
prefix=prefix,
recurse=recurse,
)
return dict(gen)
def update(self, params=None):
"""
Updates the parameter list before the forward prop so that if `params`
is None or doesn't have a certain key, the module uses the default
parameter/buffer registered in the module.
"""
# import pdb; pdb.set_trace()
if params is None:
params = AttrDict()
params = AttrDict(params)
named_params = set([name for name, _ in self.named_parameters()])
for name, param in self.named_parameters():
params.setdefault(name, param)
for name, param in self.state_dict().items():
if name not in named_params:
params.setdefault(name, param)
return params
def batch_meta_parameters(net, batch_size):
params = AttrDict()
for name, param in net.named_meta_parameters():
params[name] = param.clone().unsqueeze(0).repeat(batch_size, *[1] * len(param.shape))
return params
def batch_meta_state_dict(net, batch_size):
state_dict = AttrDict()
meta_parameters = set([name for name, _ in net.named_meta_parameters()])
for name, param in net.meta_state_dict().items():
state_dict[name] = param.clone().unsqueeze(0).repeat(batch_size, *[1] * len(param.shape))
return state_dict
|