File size: 6,965 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import math
from abc import ABC, abstractmethod
from collections import OrderedDict
from typing import Any, Dict, Optional, Tuple

import numpy as np
import torch.nn as nn
from torch import torch

from shap_e.util.collections import AttrDict


def flatten_param_shapes(param_shapes: Dict[str, Tuple[int]]):
    flat_shapes = OrderedDict(
        (name, (int(np.prod(shape)) // shape[-1], shape[-1]))
        for name, shape in param_shapes.items()
    )
    return flat_shapes


class ParamsProj(nn.Module, ABC):
    def __init__(self, *, device: torch.device, param_shapes: Dict[str, Tuple[int]], d_latent: int):
        super().__init__()
        self.device = device
        self.param_shapes = param_shapes
        self.d_latent = d_latent

    @abstractmethod
    def forward(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
        pass


class LinearParamsProj(ParamsProj):
    def __init__(
        self,
        *,
        device: torch.device,
        param_shapes: Dict[str, Tuple[int]],
        d_latent: int,
        init_scale: Optional[float] = None,
    ):
        super().__init__(device=device, param_shapes=param_shapes, d_latent=d_latent)
        self.param_shapes = param_shapes
        self.projections = nn.ModuleDict({})
        for k, v in param_shapes.items():
            self.projections[_sanitize_name(k)] = nn.Linear(
                d_latent, int(np.prod(v)), device=device
            )
            if init_scale is not None:
                scale = init_scale / math.sqrt(d_latent)
                mod = self.projections[_sanitize_name(k)]
                nn.init.normal_(mod.weight, std=scale)
                nn.init.zeros_(mod.bias)

    def forward(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
        out = AttrDict()
        for k in self.param_shapes.keys():
            proj = self.projections[_sanitize_name(k)]
            out[k] = proj(x).reshape([len(x), *self.param_shapes[k]])
        return out


class MLPParamsProj(ParamsProj):
    def __init__(
        self,
        *,
        device: torch.device,
        param_shapes: Dict[str, Tuple[int]],
        d_latent: int,
        hidden_size: Optional[int] = None,
    ):
        super().__init__(device=device, param_shapes=param_shapes, d_latent=d_latent)
        if hidden_size is None:
            hidden_size = d_latent
        self.param_shapes = param_shapes
        self.projections = nn.ModuleDict({})
        for k, v in param_shapes.items():
            self.projections[_sanitize_name(k)] = nn.Sequential(
                nn.Linear(d_latent, hidden_size, device=device),
                nn.GELU(),
                nn.Linear(hidden_size, int(np.prod(v)), device=device),
            )

    def forward(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
        out = AttrDict()
        for k in self.param_shapes.keys():
            proj = self.projections[_sanitize_name(k)]
            out[k] = proj(x).reshape([len(x), *self.param_shapes[k]])
        return out


class ChannelsProj(nn.Module):
    def __init__(
        self,
        *,
        device: torch.device,
        vectors: int,
        channels: int,
        d_latent: int,
        init_scale: float = 1.0,
        learned_scale: Optional[float] = None,
        use_ln: bool = False,
    ):
        super().__init__()
        self.proj = nn.Linear(d_latent, vectors * channels, device=device)
        self.use_ln = use_ln
        self.learned_scale = learned_scale
        if use_ln:
            self.norm = nn.LayerNorm(normalized_shape=(channels,), device=device)
            if learned_scale is not None:
                self.norm.weight.data.fill_(learned_scale)
            scale = init_scale / math.sqrt(d_latent)
        elif learned_scale is not None:
            gain = torch.ones((channels,), device=device) * learned_scale
            self.register_parameter("gain", nn.Parameter(gain))
            scale = init_scale / math.sqrt(d_latent)
        else:
            scale = init_scale / math.sqrt(d_latent * channels)
        nn.init.normal_(self.proj.weight, std=scale)
        nn.init.zeros_(self.proj.bias)
        self.d_latent = d_latent
        self.vectors = vectors
        self.channels = channels

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x_bvd = x
        w_vcd = self.proj.weight.view(self.vectors, self.channels, self.d_latent)
        b_vc = self.proj.bias.view(1, self.vectors, self.channels)
        h = torch.einsum("bvd,vcd->bvc", x_bvd, w_vcd)
        if self.use_ln:
            h = self.norm(h)
        elif self.learned_scale is not None:
            h = h * self.gain.view(1, 1, -1)
        h = h + b_vc
        return h


class ChannelsParamsProj(ParamsProj):
    def __init__(
        self,
        *,
        device: torch.device,
        param_shapes: Dict[str, Tuple[int]],
        d_latent: int,
        init_scale: float = 1.0,
        learned_scale: Optional[float] = None,
        use_ln: bool = False,
    ):
        super().__init__(device=device, param_shapes=param_shapes, d_latent=d_latent)
        self.param_shapes = param_shapes
        self.projections = nn.ModuleDict({})
        self.flat_shapes = flatten_param_shapes(param_shapes)
        self.learned_scale = learned_scale
        self.use_ln = use_ln
        for k, (vectors, channels) in self.flat_shapes.items():
            self.projections[_sanitize_name(k)] = ChannelsProj(
                device=device,
                vectors=vectors,
                channels=channels,
                d_latent=d_latent,
                init_scale=init_scale,
                learned_scale=learned_scale,
                use_ln=use_ln,
            )

    def forward(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
        out = AttrDict()
        start = 0
        for k, shape in self.param_shapes.items():
            vectors, _ = self.flat_shapes[k]
            end = start + vectors
            x_bvd = x[:, start:end]
            # print("x.shape", x.shape)
            # print("x_bvd.shape", x_bvd.shape)
            out[k] = self.projections[_sanitize_name(k)](x_bvd).reshape(len(x), *shape)
            start = end
        return out


def params_proj_from_config(
    config: Dict[str, Any], device: torch.device, param_shapes: Dict[str, Tuple[int]], d_latent: int
):
    name = config.pop("name")
    if name == "linear":
        return LinearParamsProj(
            **config, device=device, param_shapes=param_shapes, d_latent=d_latent
        )
    elif name == "mlp":
        return MLPParamsProj(**config, device=device, param_shapes=param_shapes, d_latent=d_latent)
    elif name == "channels":
        return ChannelsParamsProj(
            **config, device=device, param_shapes=param_shapes, d_latent=d_latent
        )
    else:
        raise ValueError(f"unknown params proj: {name}")


def _sanitize_name(x: str) -> str:
    return x.replace(".", "__")