Spaces:
Runtime error
Runtime error
File size: 6,965 Bytes
19c4ddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import math
from abc import ABC, abstractmethod
from collections import OrderedDict
from typing import Any, Dict, Optional, Tuple
import numpy as np
import torch.nn as nn
from torch import torch
from shap_e.util.collections import AttrDict
def flatten_param_shapes(param_shapes: Dict[str, Tuple[int]]):
flat_shapes = OrderedDict(
(name, (int(np.prod(shape)) // shape[-1], shape[-1]))
for name, shape in param_shapes.items()
)
return flat_shapes
class ParamsProj(nn.Module, ABC):
def __init__(self, *, device: torch.device, param_shapes: Dict[str, Tuple[int]], d_latent: int):
super().__init__()
self.device = device
self.param_shapes = param_shapes
self.d_latent = d_latent
@abstractmethod
def forward(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
pass
class LinearParamsProj(ParamsProj):
def __init__(
self,
*,
device: torch.device,
param_shapes: Dict[str, Tuple[int]],
d_latent: int,
init_scale: Optional[float] = None,
):
super().__init__(device=device, param_shapes=param_shapes, d_latent=d_latent)
self.param_shapes = param_shapes
self.projections = nn.ModuleDict({})
for k, v in param_shapes.items():
self.projections[_sanitize_name(k)] = nn.Linear(
d_latent, int(np.prod(v)), device=device
)
if init_scale is not None:
scale = init_scale / math.sqrt(d_latent)
mod = self.projections[_sanitize_name(k)]
nn.init.normal_(mod.weight, std=scale)
nn.init.zeros_(mod.bias)
def forward(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
out = AttrDict()
for k in self.param_shapes.keys():
proj = self.projections[_sanitize_name(k)]
out[k] = proj(x).reshape([len(x), *self.param_shapes[k]])
return out
class MLPParamsProj(ParamsProj):
def __init__(
self,
*,
device: torch.device,
param_shapes: Dict[str, Tuple[int]],
d_latent: int,
hidden_size: Optional[int] = None,
):
super().__init__(device=device, param_shapes=param_shapes, d_latent=d_latent)
if hidden_size is None:
hidden_size = d_latent
self.param_shapes = param_shapes
self.projections = nn.ModuleDict({})
for k, v in param_shapes.items():
self.projections[_sanitize_name(k)] = nn.Sequential(
nn.Linear(d_latent, hidden_size, device=device),
nn.GELU(),
nn.Linear(hidden_size, int(np.prod(v)), device=device),
)
def forward(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
out = AttrDict()
for k in self.param_shapes.keys():
proj = self.projections[_sanitize_name(k)]
out[k] = proj(x).reshape([len(x), *self.param_shapes[k]])
return out
class ChannelsProj(nn.Module):
def __init__(
self,
*,
device: torch.device,
vectors: int,
channels: int,
d_latent: int,
init_scale: float = 1.0,
learned_scale: Optional[float] = None,
use_ln: bool = False,
):
super().__init__()
self.proj = nn.Linear(d_latent, vectors * channels, device=device)
self.use_ln = use_ln
self.learned_scale = learned_scale
if use_ln:
self.norm = nn.LayerNorm(normalized_shape=(channels,), device=device)
if learned_scale is not None:
self.norm.weight.data.fill_(learned_scale)
scale = init_scale / math.sqrt(d_latent)
elif learned_scale is not None:
gain = torch.ones((channels,), device=device) * learned_scale
self.register_parameter("gain", nn.Parameter(gain))
scale = init_scale / math.sqrt(d_latent)
else:
scale = init_scale / math.sqrt(d_latent * channels)
nn.init.normal_(self.proj.weight, std=scale)
nn.init.zeros_(self.proj.bias)
self.d_latent = d_latent
self.vectors = vectors
self.channels = channels
def forward(self, x: torch.Tensor) -> torch.Tensor:
x_bvd = x
w_vcd = self.proj.weight.view(self.vectors, self.channels, self.d_latent)
b_vc = self.proj.bias.view(1, self.vectors, self.channels)
h = torch.einsum("bvd,vcd->bvc", x_bvd, w_vcd)
if self.use_ln:
h = self.norm(h)
elif self.learned_scale is not None:
h = h * self.gain.view(1, 1, -1)
h = h + b_vc
return h
class ChannelsParamsProj(ParamsProj):
def __init__(
self,
*,
device: torch.device,
param_shapes: Dict[str, Tuple[int]],
d_latent: int,
init_scale: float = 1.0,
learned_scale: Optional[float] = None,
use_ln: bool = False,
):
super().__init__(device=device, param_shapes=param_shapes, d_latent=d_latent)
self.param_shapes = param_shapes
self.projections = nn.ModuleDict({})
self.flat_shapes = flatten_param_shapes(param_shapes)
self.learned_scale = learned_scale
self.use_ln = use_ln
for k, (vectors, channels) in self.flat_shapes.items():
self.projections[_sanitize_name(k)] = ChannelsProj(
device=device,
vectors=vectors,
channels=channels,
d_latent=d_latent,
init_scale=init_scale,
learned_scale=learned_scale,
use_ln=use_ln,
)
def forward(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
out = AttrDict()
start = 0
for k, shape in self.param_shapes.items():
vectors, _ = self.flat_shapes[k]
end = start + vectors
x_bvd = x[:, start:end]
# print("x.shape", x.shape)
# print("x_bvd.shape", x_bvd.shape)
out[k] = self.projections[_sanitize_name(k)](x_bvd).reshape(len(x), *shape)
start = end
return out
def params_proj_from_config(
config: Dict[str, Any], device: torch.device, param_shapes: Dict[str, Tuple[int]], d_latent: int
):
name = config.pop("name")
if name == "linear":
return LinearParamsProj(
**config, device=device, param_shapes=param_shapes, d_latent=d_latent
)
elif name == "mlp":
return MLPParamsProj(**config, device=device, param_shapes=param_shapes, d_latent=d_latent)
elif name == "channels":
return ChannelsParamsProj(
**config, device=device, param_shapes=param_shapes, d_latent=d_latent
)
else:
raise ValueError(f"unknown params proj: {name}")
def _sanitize_name(x: str) -> str:
return x.replace(".", "__")
|