File size: 7,150 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from typing import Any, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image

from shap_e.models.generation.transformer import Transformer
from shap_e.rendering.view_data import ProjectiveCamera
from shap_e.util.collections import AttrDict

from .base import VectorEncoder


class MultiviewTransformerEncoder(VectorEncoder):
    """
    Encode cameras and views using a transformer model with extra output
    token(s) used to extract a latent vector.
    """

    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        param_shapes: Dict[str, Tuple[int]],
        params_proj: Dict[str, Any],
        latent_bottleneck: Optional[Dict[str, Any]] = None,
        d_latent: int = 512,
        latent_ctx: int = 1,
        num_views: int = 20,
        image_size: int = 256,
        patch_size: int = 32,
        use_depth: bool = False,
        max_depth: float = 5.0,
        width: int = 512,
        layers: int = 12,
        heads: int = 8,
        init_scale: float = 0.25,
        pos_emb_init_scale: float = 1.0,
    ):
        super().__init__(
            device=device,
            param_shapes=param_shapes,
            params_proj=params_proj,
            latent_bottleneck=latent_bottleneck,
            d_latent=d_latent,
        )
        self.num_views = num_views
        self.image_size = image_size
        self.patch_size = patch_size
        self.use_depth = use_depth
        self.max_depth = max_depth
        self.n_ctx = num_views * (1 + (image_size // patch_size) ** 2)
        self.latent_ctx = latent_ctx
        self.width = width

        assert d_latent % latent_ctx == 0

        self.ln_pre = nn.LayerNorm(width, device=device, dtype=dtype)
        self.backbone = Transformer(
            device=device,
            dtype=dtype,
            n_ctx=self.n_ctx + latent_ctx,
            width=width,
            layers=layers,
            heads=heads,
            init_scale=init_scale,
        )
        self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
        self.register_parameter(
            "output_tokens",
            nn.Parameter(torch.randn(latent_ctx, width, device=device, dtype=dtype)),
        )
        self.register_parameter(
            "pos_emb",
            nn.Parameter(
                pos_emb_init_scale * torch.randn(self.n_ctx, width, device=device, dtype=dtype)
            ),
        )
        self.patch_emb = nn.Conv2d(
            in_channels=3 if not use_depth else 4,
            out_channels=width,
            kernel_size=patch_size,
            stride=patch_size,
            device=device,
            dtype=dtype,
        )
        self.camera_emb = nn.Sequential(
            nn.Linear(
                3 * 4 + 1, width, device=device, dtype=dtype
            ),  # input size is for origin+x+y+z+fov
            nn.GELU(),
            nn.Linear(width, width, device=device, dtype=dtype),
        )
        self.output_proj = nn.Linear(width, d_latent // latent_ctx, device=device, dtype=dtype)

    def encode_to_vector(self, batch: AttrDict, options: Optional[AttrDict] = None) -> torch.Tensor:
        _ = options

        all_views = self.views_to_tensor(batch.views).to(self.device)
        if self.use_depth:
            all_views = torch.cat([all_views, self.depths_to_tensor(batch.depths)], dim=2)
        all_cameras = self.cameras_to_tensor(batch.cameras).to(self.device)

        batch_size, num_views, _, _, _ = all_views.shape

        views_proj = self.patch_emb(
            all_views.reshape([batch_size * num_views, *all_views.shape[2:]])
        )
        views_proj = (
            views_proj.reshape([batch_size, num_views, self.width, -1])
            .permute(0, 1, 3, 2)
            .contiguous()
        )  # [batch_size x num_views x n_patches x width]

        cameras_proj = self.camera_emb(all_cameras).reshape([batch_size, num_views, 1, self.width])

        h = torch.cat([views_proj, cameras_proj], dim=2).reshape([batch_size, -1, self.width])
        h = h + self.pos_emb
        h = torch.cat([h, self.output_tokens[None].repeat(len(h), 1, 1)], dim=1)
        h = self.ln_pre(h)
        h = self.backbone(h)
        h = self.ln_post(h)
        h = h[:, self.n_ctx :]
        h = self.output_proj(h).flatten(1)

        return h

    def views_to_tensor(self, views: Union[torch.Tensor, List[List[Image.Image]]]) -> torch.Tensor:
        """
        Returns a [batch x num_views x 3 x size x size] tensor in the range [-1, 1].
        """
        if isinstance(views, torch.Tensor):
            return views

        tensor_batch = []
        for inner_list in views:
            assert len(inner_list) == self.num_views
            inner_batch = []
            for img in inner_list:
                img = img.resize((self.image_size,) * 2).convert("RGB")
                inner_batch.append(
                    torch.from_numpy(np.array(img)).to(device=self.device, dtype=torch.float32)
                    / 127.5
                    - 1
                )
            tensor_batch.append(torch.stack(inner_batch, dim=0))
        return torch.stack(tensor_batch, dim=0).permute(0, 1, 4, 2, 3)

    def depths_to_tensor(
        self, depths: Union[torch.Tensor, List[List[Image.Image]]]
    ) -> torch.Tensor:
        """
        Returns a [batch x num_views x 1 x size x size] tensor in the range [-1, 1].
        """
        if isinstance(depths, torch.Tensor):
            return depths

        tensor_batch = []
        for inner_list in depths:
            assert len(inner_list) == self.num_views
            inner_batch = []
            for arr in inner_list:
                tensor = torch.from_numpy(arr).clamp(max=self.max_depth) / self.max_depth
                tensor = tensor * 2 - 1
                tensor = F.interpolate(
                    tensor[None, None],
                    (self.image_size,) * 2,
                    mode="nearest",
                )
                inner_batch.append(tensor.to(device=self.device, dtype=torch.float32))
            tensor_batch.append(torch.cat(inner_batch, dim=0))
        return torch.stack(tensor_batch, dim=0)

    def cameras_to_tensor(
        self, cameras: Union[torch.Tensor, List[List[ProjectiveCamera]]]
    ) -> torch.Tensor:
        """
        Returns a [batch x num_views x 3*4+1] tensor of camera information.
        """
        if isinstance(cameras, torch.Tensor):
            return cameras
        outer_batch = []
        for inner_list in cameras:
            inner_batch = []
            for camera in inner_list:
                inner_batch.append(
                    np.array(
                        [
                            *camera.x,
                            *camera.y,
                            *camera.z,
                            *camera.origin,
                            camera.x_fov,
                        ]
                    )
                )
            outer_batch.append(np.stack(inner_batch, axis=0))
        return torch.from_numpy(np.stack(outer_batch, axis=0)).float()