Spaces:
Runtime error
Runtime error
File size: 34,486 Bytes
19c4ddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 |
from abc import ABC, abstractmethod
from dataclasses import dataclass
from functools import partial
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from torch import torch
from shap_e.models.generation.perceiver import SimplePerceiver
from shap_e.models.generation.transformer import Transformer
from shap_e.models.nn.camera import DifferentiableProjectiveCamera
from shap_e.models.nn.encoding import (
MultiviewPointCloudEmbedding,
MultiviewPoseEmbedding,
PosEmbLinear,
)
from shap_e.models.nn.ops import PointSetEmbedding
from shap_e.rendering.point_cloud import PointCloud
from shap_e.rendering.view_data import ProjectiveCamera
from shap_e.util.collections import AttrDict
from .base import ChannelsEncoder
class TransformerChannelsEncoder(ChannelsEncoder, ABC):
"""
Encode point clouds using a transformer model with an extra output
token used to extract a latent vector.
"""
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
param_shapes: Dict[str, Tuple[int]],
params_proj: Dict[str, Any],
d_latent: int = 512,
latent_bottleneck: Optional[Dict[str, Any]] = None,
latent_warp: Optional[Dict[str, Any]] = None,
n_ctx: int = 1024,
width: int = 512,
layers: int = 12,
heads: int = 8,
init_scale: float = 0.25,
latent_scale: float = 1.0,
):
super().__init__(
device=device,
param_shapes=param_shapes,
params_proj=params_proj,
d_latent=d_latent,
latent_bottleneck=latent_bottleneck,
latent_warp=latent_warp,
)
self.width = width
self.device = device
self.dtype = dtype
self.n_ctx = n_ctx
self.backbone = Transformer(
device=device,
dtype=dtype,
n_ctx=n_ctx + self.latent_ctx,
width=width,
layers=layers,
heads=heads,
init_scale=init_scale,
)
self.ln_pre = nn.LayerNorm(width, device=device, dtype=dtype)
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
self.register_parameter(
"output_tokens",
nn.Parameter(torch.randn(self.latent_ctx, width, device=device, dtype=dtype)),
)
self.output_proj = nn.Linear(width, d_latent, device=device, dtype=dtype)
self.latent_scale = latent_scale
@abstractmethod
def encode_input(self, batch: AttrDict, options: Optional[AttrDict] = None) -> torch.Tensor:
pass
def encode_to_channels(
self, batch: AttrDict, options: Optional[AttrDict] = None
) -> torch.Tensor:
h = self.encode_input(batch, options=options)
h = torch.cat([h, self.output_tokens[None].repeat(len(h), 1, 1)], dim=1)
h = self.ln_pre(h)
h = self.backbone(h)
h = h[:, -self.latent_ctx :]
h = self.ln_post(h)
h = self.output_proj(h)
return h
class PerceiverChannelsEncoder(ChannelsEncoder, ABC):
"""
Encode point clouds using a perceiver model with an extra output
token used to extract a latent vector.
"""
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
param_shapes: Dict[str, Tuple[int]],
params_proj: Dict[str, Any],
min_unrolls: int,
max_unrolls: int,
d_latent: int = 512,
latent_bottleneck: Optional[Dict[str, Any]] = None,
latent_warp: Optional[Dict[str, Any]] = None,
width: int = 512,
layers: int = 12,
xattn_layers: int = 1,
heads: int = 8,
init_scale: float = 0.25,
# Training hparams
inner_batch_size: Union[int, List[int]] = 1,
data_ctx: int = 1,
):
super().__init__(
device=device,
param_shapes=param_shapes,
params_proj=params_proj,
d_latent=d_latent,
latent_bottleneck=latent_bottleneck,
latent_warp=latent_warp,
)
self.width = width
self.device = device
self.dtype = dtype
if isinstance(inner_batch_size, int):
inner_batch_size = [inner_batch_size]
self.inner_batch_size = inner_batch_size
self.data_ctx = data_ctx
self.min_unrolls = min_unrolls
self.max_unrolls = max_unrolls
encoder_fn = lambda inner_batch_size: SimplePerceiver(
device=device,
dtype=dtype,
n_ctx=self.data_ctx + self.latent_ctx,
n_data=inner_batch_size,
width=width,
layers=xattn_layers,
heads=heads,
init_scale=init_scale,
)
self.encoder = (
encoder_fn(self.inner_batch_size[0])
if len(self.inner_batch_size) == 1
else nn.ModuleList([encoder_fn(inner_bsz) for inner_bsz in self.inner_batch_size])
)
self.processor = Transformer(
device=device,
dtype=dtype,
n_ctx=self.data_ctx + self.latent_ctx,
layers=layers - xattn_layers,
width=width,
heads=heads,
init_scale=init_scale,
)
self.ln_pre = nn.LayerNorm(width, device=device, dtype=dtype)
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
self.register_parameter(
"output_tokens",
nn.Parameter(torch.randn(self.latent_ctx, width, device=device, dtype=dtype)),
)
self.output_proj = nn.Linear(width, d_latent, device=device, dtype=dtype)
@abstractmethod
def get_h_and_iterator(
self, batch: AttrDict, options: Optional[AttrDict] = None
) -> Tuple[torch.Tensor, Iterable[Union[torch.Tensor, Tuple]]]:
"""
:return: a tuple of (
the initial output tokens of size [batch_size, data_ctx + latent_ctx, width],
an iterator over the given data
)
"""
def encode_to_channels(
self, batch: AttrDict, options: Optional[AttrDict] = None
) -> torch.Tensor:
h, it = self.get_h_and_iterator(batch, options=options)
n_unrolls = self.get_n_unrolls()
for _ in range(n_unrolls):
data = next(it)
if isinstance(data, tuple):
for data_i, encoder_i in zip(data, self.encoder):
h = encoder_i(h, data_i)
else:
h = self.encoder(h, data)
h = self.processor(h)
h = self.output_proj(self.ln_post(h[:, -self.latent_ctx :]))
return h
def get_n_unrolls(self):
if self.training:
n_unrolls = torch.randint(
self.min_unrolls, self.max_unrolls + 1, size=(), device=self.device
)
dist.broadcast(n_unrolls, 0)
n_unrolls = n_unrolls.item()
else:
n_unrolls = self.max_unrolls
return n_unrolls
@dataclass
class DatasetIterator:
embs: torch.Tensor # [batch_size, dataset_size, *shape]
batch_size: int
def __iter__(self):
self._reset()
return self
def __next__(self):
_outer_batch_size, dataset_size, *_shape = self.embs.shape
while True:
start = self.idx
self.idx += self.batch_size
end = self.idx
if end <= dataset_size:
break
self._reset()
return self.embs[:, start:end]
def _reset(self):
self._shuffle()
self.idx = 0 # pylint: disable=attribute-defined-outside-init
def _shuffle(self):
outer_batch_size, dataset_size, *shape = self.embs.shape
idx = torch.stack(
[
torch.randperm(dataset_size, device=self.embs.device)
for _ in range(outer_batch_size)
],
dim=0,
)
idx = idx.view(outer_batch_size, dataset_size, *([1] * len(shape)))
idx = torch.broadcast_to(idx, self.embs.shape)
self.embs = torch.gather(self.embs, 1, idx)
class PointCloudTransformerChannelsEncoder(TransformerChannelsEncoder):
"""
Encode point clouds using a transformer model with an extra output
token used to extract a latent vector.
"""
def __init__(
self,
*,
input_channels: int = 6,
**kwargs,
):
super().__init__(**kwargs)
self.input_channels = input_channels
self.input_proj = nn.Linear(
input_channels, self.width, device=self.device, dtype=self.dtype
)
def encode_input(self, batch: AttrDict, options: Optional[AttrDict] = None) -> torch.Tensor:
_ = options
points = batch.points
h = self.input_proj(points.permute(0, 2, 1)) # NCL -> NLC
return h
class PointCloudPerceiverChannelsEncoder(PerceiverChannelsEncoder):
"""
Encode point clouds using a transformer model with an extra output
token used to extract a latent vector.
"""
def __init__(
self,
*,
cross_attention_dataset: str = "pcl",
fps_method: str = "fps",
# point cloud hyperparameters
input_channels: int = 6,
pos_emb: Optional[str] = None,
# multiview hyperparameters
image_size: int = 256,
patch_size: int = 32,
pose_dropout: float = 0.0,
use_depth: bool = False,
max_depth: float = 5.0,
# point conv hyperparameters
pointconv_radius: float = 0.5,
pointconv_samples: int = 32,
pointconv_hidden: Optional[List[int]] = None,
pointconv_patch_size: int = 1,
pointconv_stride: int = 1,
pointconv_padding_mode: str = "zeros",
use_pointconv: bool = False,
# other hyperparameters
**kwargs,
):
super().__init__(**kwargs)
assert cross_attention_dataset in (
"pcl",
"multiview",
"dense_pose_multiview",
"multiview_pcl",
"pcl_and_multiview_pcl",
"incorrect_multiview_pcl",
"pcl_and_incorrect_multiview_pcl",
)
assert fps_method in ("fps", "first")
self.cross_attention_dataset = cross_attention_dataset
self.fps_method = fps_method
self.input_channels = input_channels
self.input_proj = PosEmbLinear(
pos_emb,
input_channels,
self.width,
device=self.device,
dtype=self.dtype,
)
self.use_pointconv = use_pointconv
if use_pointconv:
if pointconv_hidden is None:
pointconv_hidden = [self.width]
self.point_conv = PointSetEmbedding(
n_point=self.data_ctx,
radius=pointconv_radius,
n_sample=pointconv_samples,
d_input=self.input_proj.weight.shape[0],
d_hidden=pointconv_hidden,
patch_size=pointconv_patch_size,
stride=pointconv_stride,
padding_mode=pointconv_padding_mode,
fps_method=fps_method,
device=self.device,
dtype=self.dtype,
)
if self.cross_attention_dataset == "multiview":
self.image_size = image_size
self.patch_size = patch_size
self.pose_dropout = pose_dropout
self.use_depth = use_depth
self.max_depth = max_depth
pos_ctx = (image_size // patch_size) ** 2
self.register_parameter(
"pos_emb",
nn.Parameter(
torch.randn(
pos_ctx * self.inner_batch_size,
self.width,
device=self.device,
dtype=self.dtype,
)
),
)
self.patch_emb = nn.Conv2d(
in_channels=3 if not use_depth else 4,
out_channels=self.width,
kernel_size=patch_size,
stride=patch_size,
device=self.device,
dtype=self.dtype,
)
self.camera_emb = nn.Sequential(
nn.Linear(
3 * 4 + 1, self.width, device=self.device, dtype=self.dtype
), # input size is for origin+x+y+z+fov
nn.GELU(),
nn.Linear(self.width, 2 * self.width, device=self.device, dtype=self.dtype),
)
elif self.cross_attention_dataset == "dense_pose_multiview":
# The number of output features is halved, because a patch_size of
# 32 ends up with a large patch_emb weight.
self.view_pose_width = self.width // 2
self.image_size = image_size
self.patch_size = patch_size
self.use_depth = use_depth
self.max_depth = max_depth
self.mv_pose_embed = MultiviewPoseEmbedding(
posemb_version="nerf",
n_channels=4 if self.use_depth else 3,
out_features=self.view_pose_width,
device=self.device,
dtype=self.dtype,
)
pos_ctx = (image_size // patch_size) ** 2
# Positional embedding is unnecessary because pose information is baked into each pixel
self.patch_emb = nn.Conv2d(
in_channels=self.view_pose_width,
out_channels=self.width,
kernel_size=patch_size,
stride=patch_size,
device=self.device,
dtype=self.dtype,
)
elif (
self.cross_attention_dataset == "multiview_pcl"
or self.cross_attention_dataset == "incorrect_multiview_pcl"
):
self.view_pose_width = self.width // 2
self.image_size = image_size
self.patch_size = patch_size
self.max_depth = max_depth
assert use_depth
self.mv_pcl_embed = MultiviewPointCloudEmbedding(
posemb_version="nerf",
n_channels=3,
out_features=self.view_pose_width,
device=self.device,
dtype=self.dtype,
)
self.patch_emb = nn.Conv2d(
in_channels=self.view_pose_width,
out_channels=self.width,
kernel_size=patch_size,
stride=patch_size,
device=self.device,
dtype=self.dtype,
)
elif (
self.cross_attention_dataset == "pcl_and_multiview_pcl"
or self.cross_attention_dataset == "pcl_and_incorrect_multiview_pcl"
):
self.view_pose_width = self.width // 2
self.image_size = image_size
self.patch_size = patch_size
self.max_depth = max_depth
assert use_depth
self.mv_pcl_embed = MultiviewPointCloudEmbedding(
posemb_version="nerf",
n_channels=3,
out_features=self.view_pose_width,
device=self.device,
dtype=self.dtype,
)
self.patch_emb = nn.Conv2d(
in_channels=self.view_pose_width,
out_channels=self.width,
kernel_size=patch_size,
stride=patch_size,
device=self.device,
dtype=self.dtype,
)
def get_h_and_iterator(
self, batch: AttrDict, options: Optional[AttrDict] = None
) -> Tuple[torch.Tensor, Iterable]:
"""
:return: a tuple of (
the initial output tokens of size [batch_size, data_ctx + latent_ctx, width],
an iterator over the given data
)
"""
options = AttrDict() if options is None else options
# Build the initial query embeddings
points = batch.points.permute(0, 2, 1) # NCL -> NLC
if self.use_pointconv:
points = self.input_proj(points).permute(0, 2, 1) # NLC -> NCL
xyz = batch.points[:, :3]
data_tokens = self.point_conv(xyz, points).permute(0, 2, 1) # NCL -> NLC
else:
fps_samples = self.sample_pcl_fps(points)
data_tokens = self.input_proj(fps_samples)
batch_size = points.shape[0]
latent_tokens = self.output_tokens.unsqueeze(0).repeat(batch_size, 1, 1)
h = self.ln_pre(torch.cat([data_tokens, latent_tokens], dim=1))
assert h.shape == (batch_size, self.data_ctx + self.latent_ctx, self.width)
# Build the dataset embedding iterator
dataset_fn = {
"pcl": self.get_pcl_dataset,
"multiview": self.get_multiview_dataset,
"dense_pose_multiview": self.get_dense_pose_multiview_dataset,
"pcl_and_multiview_pcl": self.get_pcl_and_multiview_pcl_dataset,
"multiview_pcl": self.get_multiview_pcl_dataset,
}[self.cross_attention_dataset]
it = dataset_fn(batch, options=options)
return h, it
def sample_pcl_fps(self, points: torch.Tensor) -> torch.Tensor:
return sample_pcl_fps(points, data_ctx=self.data_ctx, method=self.fps_method)
def get_pcl_dataset(
self,
batch: AttrDict,
options: Optional[AttrDict[str, Any]] = None,
inner_batch_size: Optional[int] = None,
) -> Iterable:
_ = options
if inner_batch_size is None:
inner_batch_size = self.inner_batch_size[0]
points = batch.points.permute(0, 2, 1) # NCL -> NLC
dataset_emb = self.input_proj(points)
assert dataset_emb.shape[1] >= inner_batch_size
return iter(DatasetIterator(dataset_emb, batch_size=inner_batch_size))
def get_multiview_dataset(
self,
batch: AttrDict,
options: Optional[AttrDict] = None,
inner_batch_size: Optional[int] = None,
) -> Iterable:
_ = options
if inner_batch_size is None:
inner_batch_size = self.inner_batch_size[0]
dataset_emb = self.encode_views(batch)
batch_size, num_views, n_patches, width = dataset_emb.shape
assert num_views >= inner_batch_size
it = iter(DatasetIterator(dataset_emb, batch_size=inner_batch_size))
def gen():
while True:
examples = next(it)
assert examples.shape == (batch_size, self.inner_batch_size, n_patches, self.width)
views = examples.reshape(batch_size, -1, width) + self.pos_emb
yield views
return gen()
def get_dense_pose_multiview_dataset(
self,
batch: AttrDict,
options: Optional[AttrDict] = None,
inner_batch_size: Optional[int] = None,
) -> Iterable:
_ = options
if inner_batch_size is None:
inner_batch_size = self.inner_batch_size[0]
dataset_emb = self.encode_dense_pose_views(batch)
batch_size, num_views, n_patches, width = dataset_emb.shape
assert num_views >= inner_batch_size
it = iter(DatasetIterator(dataset_emb, batch_size=inner_batch_size))
def gen():
while True:
examples = next(it)
assert examples.shape == (batch_size, inner_batch_size, n_patches, self.width)
views = examples.reshape(batch_size, -1, width)
yield views
return gen()
def get_pcl_and_multiview_pcl_dataset(
self,
batch: AttrDict,
options: Optional[AttrDict] = None,
use_distance: bool = True,
) -> Iterable:
_ = options
pcl_it = self.get_pcl_dataset(
batch, options=options, inner_batch_size=self.inner_batch_size[0]
)
multiview_pcl_emb = self.encode_multiview_pcl(batch, use_distance=use_distance)
batch_size, num_views, n_patches, width = multiview_pcl_emb.shape
assert num_views >= self.inner_batch_size[1]
multiview_pcl_it = iter(
DatasetIterator(multiview_pcl_emb, batch_size=self.inner_batch_size[1])
)
def gen():
while True:
pcl = next(pcl_it)
multiview_pcl = next(multiview_pcl_it)
assert multiview_pcl.shape == (
batch_size,
self.inner_batch_size[1],
n_patches,
self.width,
)
yield pcl, multiview_pcl.reshape(batch_size, -1, width)
return gen()
def get_multiview_pcl_dataset(
self,
batch: AttrDict,
options: Optional[AttrDict] = None,
inner_batch_size: Optional[int] = None,
use_distance: bool = True,
) -> Iterable:
_ = options
if inner_batch_size is None:
inner_batch_size = self.inner_batch_size[0]
multiview_pcl_emb = self.encode_multiview_pcl(batch, use_distance=use_distance)
batch_size, num_views, n_patches, width = multiview_pcl_emb.shape
assert num_views >= inner_batch_size
multiview_pcl_it = iter(DatasetIterator(multiview_pcl_emb, batch_size=inner_batch_size))
def gen():
while True:
multiview_pcl = next(multiview_pcl_it)
assert multiview_pcl.shape == (
batch_size,
inner_batch_size,
n_patches,
self.width,
)
yield multiview_pcl.reshape(batch_size, -1, width)
return gen()
def encode_views(self, batch: AttrDict) -> torch.Tensor:
"""
:return: [batch_size, num_views, n_patches, width]
"""
all_views = self.views_to_tensor(batch.views).to(self.device)
if self.use_depth:
all_views = torch.cat([all_views, self.depths_to_tensor(batch.depths)], dim=2)
all_cameras = self.cameras_to_tensor(batch.cameras).to(self.device)
batch_size, num_views, _, _, _ = all_views.shape
views_proj = self.patch_emb(
all_views.reshape([batch_size * num_views, *all_views.shape[2:]])
)
views_proj = (
views_proj.reshape([batch_size, num_views, self.width, -1])
.permute(0, 1, 3, 2)
.contiguous()
) # [batch_size x num_views x n_patches x width]
# [batch_size, num_views, 1, 2 * width]
camera_proj = self.camera_emb(all_cameras).reshape(
[batch_size, num_views, 1, self.width * 2]
)
pose_dropout = self.pose_dropout if self.training else 0.0
mask = torch.rand(batch_size, 1, 1, 1, device=views_proj.device) >= pose_dropout
camera_proj = torch.where(mask, camera_proj, torch.zeros_like(camera_proj))
scale, shift = camera_proj.chunk(2, dim=3)
views_proj = views_proj * (scale + 1.0) + shift
return views_proj
def encode_dense_pose_views(self, batch: AttrDict) -> torch.Tensor:
"""
:return: [batch_size, num_views, n_patches, width]
"""
all_views = self.views_to_tensor(batch.views).to(self.device)
if self.use_depth:
depths = self.depths_to_tensor(batch.depths)
all_views = torch.cat([all_views, depths], dim=2)
dense_poses, _ = self.dense_pose_cameras_to_tensor(batch.cameras)
dense_poses = dense_poses.permute(0, 1, 4, 5, 2, 3)
position, direction = dense_poses[:, :, 0], dense_poses[:, :, 1]
all_view_poses = self.mv_pose_embed(all_views, position, direction)
batch_size, num_views, _, _, _ = all_view_poses.shape
views_proj = self.patch_emb(
all_view_poses.reshape([batch_size * num_views, *all_view_poses.shape[2:]])
)
views_proj = (
views_proj.reshape([batch_size, num_views, self.width, -1])
.permute(0, 1, 3, 2)
.contiguous()
) # [batch_size x num_views x n_patches x width]
return views_proj
def encode_multiview_pcl(self, batch: AttrDict, use_distance: bool = True) -> torch.Tensor:
"""
:return: [batch_size, num_views, n_patches, width]
"""
all_views = self.views_to_tensor(batch.views).to(self.device)
depths = self.raw_depths_to_tensor(batch.depths)
all_view_alphas = self.view_alphas_to_tensor(batch.view_alphas).to(self.device)
mask = all_view_alphas >= 0.999
dense_poses, camera_z = self.dense_pose_cameras_to_tensor(batch.cameras)
dense_poses = dense_poses.permute(0, 1, 4, 5, 2, 3)
origin, direction = dense_poses[:, :, 0], dense_poses[:, :, 1]
if use_distance:
ray_depth_factor = torch.sum(direction * camera_z[..., None, None], dim=2, keepdim=True)
depths = depths / ray_depth_factor
position = origin + depths * direction
all_view_poses = self.mv_pcl_embed(all_views, origin, position, mask)
batch_size, num_views, _, _, _ = all_view_poses.shape
views_proj = self.patch_emb(
all_view_poses.reshape([batch_size * num_views, *all_view_poses.shape[2:]])
)
views_proj = (
views_proj.reshape([batch_size, num_views, self.width, -1])
.permute(0, 1, 3, 2)
.contiguous()
) # [batch_size x num_views x n_patches x width]
return views_proj
def views_to_tensor(self, views: Union[torch.Tensor, List[List[Image.Image]]]) -> torch.Tensor:
"""
Returns a [batch x num_views x 3 x size x size] tensor in the range [-1, 1].
"""
if isinstance(views, torch.Tensor):
return views
tensor_batch = []
num_views = len(views[0])
for inner_list in views:
assert len(inner_list) == num_views
inner_batch = []
for img in inner_list:
img = img.resize((self.image_size,) * 2).convert("RGB")
inner_batch.append(
torch.from_numpy(np.array(img)).to(device=self.device, dtype=torch.float32)
/ 127.5
- 1
)
tensor_batch.append(torch.stack(inner_batch, dim=0))
return torch.stack(tensor_batch, dim=0).permute(0, 1, 4, 2, 3)
def depths_to_tensor(
self, depths: Union[torch.Tensor, List[List[Image.Image]]]
) -> torch.Tensor:
"""
Returns a [batch x num_views x 1 x size x size] tensor in the range [-1, 1].
"""
if isinstance(depths, torch.Tensor):
return depths
tensor_batch = []
num_views = len(depths[0])
for inner_list in depths:
assert len(inner_list) == num_views
inner_batch = []
for arr in inner_list:
tensor = torch.from_numpy(arr).clamp(max=self.max_depth) / self.max_depth
tensor = tensor * 2 - 1
tensor = F.interpolate(
tensor[None, None],
(self.image_size,) * 2,
mode="nearest",
)
inner_batch.append(tensor.to(device=self.device, dtype=torch.float32))
tensor_batch.append(torch.cat(inner_batch, dim=0))
return torch.stack(tensor_batch, dim=0)
def view_alphas_to_tensor(
self, view_alphas: Union[torch.Tensor, List[List[Image.Image]]]
) -> torch.Tensor:
"""
Returns a [batch x num_views x 1 x size x size] tensor in the range [0, 1].
"""
if isinstance(view_alphas, torch.Tensor):
return view_alphas
tensor_batch = []
num_views = len(view_alphas[0])
for inner_list in view_alphas:
assert len(inner_list) == num_views
inner_batch = []
for img in inner_list:
tensor = (
torch.from_numpy(np.array(img)).to(device=self.device, dtype=torch.float32)
/ 255.0
)
tensor = F.interpolate(
tensor[None, None],
(self.image_size,) * 2,
mode="nearest",
)
inner_batch.append(tensor)
tensor_batch.append(torch.cat(inner_batch, dim=0))
return torch.stack(tensor_batch, dim=0)
def raw_depths_to_tensor(
self, depths: Union[torch.Tensor, List[List[Image.Image]]]
) -> torch.Tensor:
"""
Returns a [batch x num_views x 1 x size x size] tensor
"""
if isinstance(depths, torch.Tensor):
return depths
tensor_batch = []
num_views = len(depths[0])
for inner_list in depths:
assert len(inner_list) == num_views
inner_batch = []
for arr in inner_list:
tensor = torch.from_numpy(arr).clamp(max=self.max_depth)
tensor = F.interpolate(
tensor[None, None],
(self.image_size,) * 2,
mode="nearest",
)
inner_batch.append(tensor.to(device=self.device, dtype=torch.float32))
tensor_batch.append(torch.cat(inner_batch, dim=0))
return torch.stack(tensor_batch, dim=0)
def cameras_to_tensor(
self, cameras: Union[torch.Tensor, List[List[ProjectiveCamera]]]
) -> torch.Tensor:
"""
Returns a [batch x num_views x 3*4+1] tensor of camera information.
"""
if isinstance(cameras, torch.Tensor):
return cameras
outer_batch = []
for inner_list in cameras:
inner_batch = []
for camera in inner_list:
inner_batch.append(
np.array(
[
*camera.x,
*camera.y,
*camera.z,
*camera.origin,
camera.x_fov,
]
)
)
outer_batch.append(np.stack(inner_batch, axis=0))
return torch.from_numpy(np.stack(outer_batch, axis=0)).float()
def dense_pose_cameras_to_tensor(
self, cameras: Union[torch.Tensor, List[List[ProjectiveCamera]]]
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Returns a tuple of (rays, z_directions) where
- rays: [batch, num_views, height, width, 2, 3] tensor of camera information.
- z_directions: [batch, num_views, 3] tensor of camera z directions.
"""
if isinstance(cameras, torch.Tensor):
raise NotImplementedError
for inner_list in cameras:
assert len(inner_list) == len(cameras[0])
camera = cameras[0][0]
flat_camera = DifferentiableProjectiveCamera(
origin=torch.from_numpy(
np.stack(
[cam.origin for inner_list in cameras for cam in inner_list],
axis=0,
)
).to(self.device),
x=torch.from_numpy(
np.stack(
[cam.x for inner_list in cameras for cam in inner_list],
axis=0,
)
).to(self.device),
y=torch.from_numpy(
np.stack(
[cam.y for inner_list in cameras for cam in inner_list],
axis=0,
)
).to(self.device),
z=torch.from_numpy(
np.stack(
[cam.z for inner_list in cameras for cam in inner_list],
axis=0,
)
).to(self.device),
width=camera.width,
height=camera.height,
x_fov=camera.x_fov,
y_fov=camera.y_fov,
)
batch_size = len(cameras) * len(cameras[0])
coords = (
flat_camera.image_coords()
.to(flat_camera.origin.device)
.unsqueeze(0)
.repeat(batch_size, 1, 1)
)
rays = flat_camera.camera_rays(coords)
return (
rays.view(len(cameras), len(cameras[0]), camera.height, camera.width, 2, 3).to(
self.device
),
flat_camera.z.view(len(cameras), len(cameras[0]), 3).to(self.device),
)
def sample_pcl_fps(points: torch.Tensor, data_ctx: int, method: str = "fps") -> torch.Tensor:
"""
Run farthest-point sampling on a batch of point clouds.
:param points: batch of shape [N x num_points].
:param data_ctx: subsample count.
:param method: either 'fps' or 'first'. Using 'first' assumes that the
points are already sorted according to FPS sampling.
:return: batch of shape [N x min(num_points, data_ctx)].
"""
n_points = points.shape[1]
if n_points == data_ctx:
return points
if method == "first":
return points[:, :data_ctx]
elif method == "fps":
batch = points.cpu().split(1, dim=0)
fps = [sample_fps(x, n_samples=data_ctx) for x in batch]
return torch.cat(fps, dim=0).to(points.device)
else:
raise ValueError(f"unsupported farthest-point sampling method: {method}")
def sample_fps(example: torch.Tensor, n_samples: int) -> torch.Tensor:
"""
:param example: [1, n_points, 3 + n_channels]
:return: [1, n_samples, 3 + n_channels]
"""
points = example.cpu().squeeze(0).numpy()
coords, raw_channels = points[:, :3], points[:, 3:]
n_points, n_channels = raw_channels.shape
assert n_samples <= n_points
channels = {str(idx): raw_channels[:, idx] for idx in range(n_channels)}
max_points = min(32768, n_points)
fps_pcl = (
PointCloud(coords=coords, channels=channels)
.random_sample(max_points)
.farthest_point_sample(n_samples)
)
fps_channels = np.stack([fps_pcl.channels[str(idx)] for idx in range(n_channels)], axis=1)
fps = np.concatenate([fps_pcl.coords, fps_channels], axis=1)
fps = torch.from_numpy(fps).unsqueeze(0)
assert fps.shape == (1, n_samples, 3 + n_channels)
return fps
|