File size: 12,784 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from shap_e.util.collections import AttrDict

from .meta import MetaModule, subdict
from .pointnet2_utils import sample_and_group, sample_and_group_all


def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


def quick_gelu(x):
    return x * torch.sigmoid(1.702 * x)


def torch_gelu(x):
    return torch.nn.functional.gelu(x)


def geglu(x):
    v, gates = x.chunk(2, dim=-1)
    return v * gelu(gates)


class SirenSin:
    def __init__(self, w0=30.0):
        self.w0 = w0

    def __call__(self, x):
        return torch.sin(self.w0 * x)


def get_act(name):
    return {
        "relu": torch.nn.functional.relu,
        "leaky_relu": torch.nn.functional.leaky_relu,
        "swish": swish,
        "tanh": torch.tanh,
        "gelu": gelu,
        "quick_gelu": quick_gelu,
        "torch_gelu": torch_gelu,
        "gelu2": quick_gelu,
        "geglu": geglu,
        "sigmoid": torch.sigmoid,
        "sin": torch.sin,
        "sin30": SirenSin(w0=30.0),
        "softplus": F.softplus,
        "exp": torch.exp,
        "identity": lambda x: x,
    }[name]


def zero_init(affine):
    nn.init.constant_(affine.weight, 0.0)
    if affine.bias is not None:
        nn.init.constant_(affine.bias, 0.0)


def siren_init_first_layer(affine, init_scale: float = 1.0):
    n_input = affine.weight.shape[1]
    u = init_scale / n_input
    nn.init.uniform_(affine.weight, -u, u)
    if affine.bias is not None:
        nn.init.constant_(affine.bias, 0.0)


def siren_init(affine, coeff=1.0, init_scale: float = 1.0):
    n_input = affine.weight.shape[1]
    u = init_scale * np.sqrt(6.0 / n_input) / coeff
    nn.init.uniform_(affine.weight, -u, u)
    if affine.bias is not None:
        nn.init.constant_(affine.bias, 0.0)


def siren_init_30(affine, init_scale: float = 1.0):
    siren_init(affine, coeff=30.0, init_scale=init_scale)


def std_init(affine, init_scale: float = 1.0):
    n_in = affine.weight.shape[1]
    stddev = init_scale / math.sqrt(n_in)
    nn.init.normal_(affine.weight, std=stddev)
    if affine.bias is not None:
        nn.init.constant_(affine.bias, 0.0)


def mlp_init(affines, init: Optional[str] = None, init_scale: float = 1.0):
    if init == "siren30":
        for idx, affine in enumerate(affines):
            init = siren_init_first_layer if idx == 0 else siren_init_30
            init(affine, init_scale=init_scale)
    elif init == "siren":
        for idx, affine in enumerate(affines):
            init = siren_init_first_layer if idx == 0 else siren_init
            init(affine, init_scale=init_scale)
    elif init is None:
        for affine in affines:
            std_init(affine, init_scale=init_scale)
    else:
        raise NotImplementedError(init)


class MetaLinear(MetaModule):
    def __init__(
        self,
        n_in,
        n_out,
        bias: bool = True,
        meta_scale: bool = True,
        meta_shift: bool = True,
        meta_proj: bool = False,
        meta_bias: bool = False,
        trainable_meta: bool = False,
        **kwargs,
    ):
        super().__init__()
        # n_in, n_out, bias=bias)
        register_meta_fn = (
            self.register_meta_parameter if trainable_meta else self.register_meta_buffer
        )
        if meta_scale:
            register_meta_fn("scale", nn.Parameter(torch.ones(n_out, **kwargs)))
        if meta_shift:
            register_meta_fn("shift", nn.Parameter(torch.zeros(n_out, **kwargs)))

        register_proj_fn = self.register_parameter if not meta_proj else register_meta_fn
        register_proj_fn("weight", nn.Parameter(torch.empty((n_out, n_in), **kwargs)))

        if not bias:
            self.register_parameter("bias", None)
        else:
            register_bias_fn = self.register_parameter if not meta_bias else register_meta_fn
            register_bias_fn("bias", nn.Parameter(torch.empty(n_out, **kwargs)))

        self.reset_parameters()

    def reset_parameters(self) -> None:

        # from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear

        # Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
        # uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see
        # https://github.com/pytorch/pytorch/issues/57109
        nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
            nn.init.uniform_(self.bias, -bound, bound)

    def _bcast(self, op, left, right):
        if right.ndim == 2:
            # Has dimension [batch x d_output]
            right = right.unsqueeze(1)
        return op(left, right)

    def forward(self, x, params=None):
        params = self.update(params)

        batch_size, *shape, d_in = x.shape
        x = x.view(batch_size, -1, d_in)

        if params.weight.ndim == 2:
            h = torch.einsum("bni,oi->bno", x, params.weight)
        elif params.weight.ndim == 3:
            h = torch.einsum("bni,boi->bno", x, params.weight)

        if params.bias is not None:
            h = self._bcast(torch.add, h, params.bias)

        if params.scale is not None:
            h = self._bcast(torch.mul, h, params.scale)

        if params.shift is not None:
            h = self._bcast(torch.add, h, params.shift)

        h = h.view(batch_size, *shape, -1)
        return h


def Conv(n_dim, d_in, d_out, kernel, stride=1, padding=0, dilation=1, **kwargs):
    cls = {
        1: nn.Conv1d,
        2: nn.Conv2d,
        3: nn.Conv3d,
    }[n_dim]
    return cls(d_in, d_out, kernel, stride=stride, padding=padding, dilation=dilation, **kwargs)


def flatten(x):
    batch_size, *shape, n_channels = x.shape
    n_ctx = np.prod(shape)
    return x.view(batch_size, n_ctx, n_channels), AttrDict(
        shape=shape, n_ctx=n_ctx, n_channels=n_channels
    )


def unflatten(x, info):
    batch_size = x.shape[0]
    return x.view(batch_size, *info.shape, info.n_channels)


def torchify(x):
    extent = list(range(1, x.ndim - 1))
    return x.permute([0, x.ndim - 1, *extent])


def untorchify(x):
    extent = list(range(2, x.ndim))
    return x.permute([0, *extent, 1])


class MLP(nn.Module):
    def __init__(
        self,
        d_input: int,
        d_hidden: List[int],
        d_output: int,
        act_name: str = "quick_gelu",
        bias: bool = True,
        init: Optional[str] = None,
        init_scale: float = 1.0,
        zero_out: bool = False,
    ):
        """
        Required: d_input, d_hidden, d_output
        Optional: act_name, bias
        """
        super().__init__()

        ds = [d_input] + d_hidden + [d_output]
        affines = [nn.Linear(d_in, d_out, bias=bias) for d_in, d_out in zip(ds[:-1], ds[1:])]
        self.d = ds
        self.affines = nn.ModuleList(affines)
        self.act = get_act(act_name)

        mlp_init(self.affines, init=init, init_scale=init_scale)
        if zero_out:
            zero_init(affines[-1])

    def forward(self, h, options: Optional[AttrDict] = None, log_prefix: str = ""):
        options = AttrDict() if options is None else AttrDict(options)
        *hid, out = self.affines
        for i, f in enumerate(hid):
            h = self.act(f(h))
        h = out(h)
        return h


class MetaMLP(MetaModule):
    def __init__(
        self,
        d_input: int,
        d_hidden: List[int],
        d_output: int,
        act_name: str = "quick_gelu",
        bias: bool = True,
        meta_scale: bool = True,
        meta_shift: bool = True,
        meta_proj: bool = False,
        meta_bias: bool = False,
        trainable_meta: bool = False,
        init: Optional[str] = None,
        init_scale: float = 1.0,
        zero_out: bool = False,
    ):
        super().__init__()
        ds = [d_input] + d_hidden + [d_output]
        affines = [
            MetaLinear(
                d_in,
                d_out,
                bias=bias,
                meta_scale=meta_scale,
                meta_shift=meta_shift,
                meta_proj=meta_proj,
                meta_bias=meta_bias,
                trainable_meta=trainable_meta,
            )
            for d_in, d_out in zip(ds[:-1], ds[1:])
        ]
        self.d = ds
        self.affines = nn.ModuleList(affines)
        self.act = get_act(act_name)

        mlp_init(affines, init=init, init_scale=init_scale)
        if zero_out:
            zero_init(affines[-1])

    def forward(self, h, params=None, options: Optional[AttrDict] = None, log_prefix: str = ""):
        options = AttrDict() if options is None else AttrDict(options)
        params = self.update(params)
        *hid, out = self.affines
        for i, layer in enumerate(hid):
            h = self.act(layer(h, params=subdict(params, f"{log_prefix}affines.{i}")))
        last = len(self.affines) - 1
        h = out(h, params=subdict(params, f"{log_prefix}affines.{last}"))
        return h


class LayerNorm(nn.LayerNorm):
    def __init__(
        self, norm_shape: Union[int, Tuple[int]], eps: float = 1e-5, elementwise_affine: bool = True
    ):
        super().__init__(norm_shape, eps=eps, elementwise_affine=elementwise_affine)
        self.width = np.prod(norm_shape)
        self.max_numel = 65535 * self.width

    def forward(self, input):
        if input.numel() > self.max_numel:
            return F.layer_norm(
                input.float(), self.normalized_shape, self.weight, self.bias, self.eps
            ).type_as(input)
        else:
            return super(LayerNorm, self).forward(input.float()).type_as(input)


class PointSetEmbedding(nn.Module):
    def __init__(
        self,
        *,
        radius: float,
        n_point: int,
        n_sample: int,
        d_input: int,
        d_hidden: List[int],
        patch_size: int = 1,
        stride: int = 1,
        activation: str = "swish",
        group_all: bool = False,
        padding_mode: str = "zeros",
        fps_method: str = "fps",
        **kwargs,
    ):
        super().__init__()
        self.n_point = n_point
        self.radius = radius
        self.n_sample = n_sample
        self.mlp_convs = nn.ModuleList()
        self.act = get_act(activation)
        self.patch_size = patch_size
        self.stride = stride
        last_channel = d_input + 3
        for out_channel in d_hidden:
            self.mlp_convs.append(
                nn.Conv2d(
                    last_channel,
                    out_channel,
                    kernel_size=(patch_size, 1),
                    stride=(stride, 1),
                    padding=(patch_size // 2, 0),
                    padding_mode=padding_mode,
                    **kwargs,
                )
            )
            last_channel = out_channel
        self.group_all = group_all
        self.fps_method = fps_method

    def forward(self, xyz, points):
        """
        Input:
            xyz: input points position data, [B, C, N]
            points: input points data, [B, D, N]
        Return:
            new_points: sample points feature data, [B, d_hidden[-1], n_point]
        """
        xyz = xyz.permute(0, 2, 1)
        if points is not None:
            points = points.permute(0, 2, 1)

        if self.group_all:
            new_xyz, new_points = sample_and_group_all(xyz, points)
        else:
            new_xyz, new_points = sample_and_group(
                self.n_point,
                self.radius,
                self.n_sample,
                xyz,
                points,
                deterministic=not self.training,
                fps_method=self.fps_method,
            )
        # new_xyz: sampled points position data, [B, n_point, C]
        # new_points: sampled points data, [B, n_point, n_sample, C+D]
        new_points = new_points.permute(0, 3, 2, 1)  # [B, C+D, n_sample, n_point]
        for i, conv in enumerate(self.mlp_convs):
            new_points = self.act(self.apply_conv(new_points, conv))

        new_points = new_points.mean(dim=2)
        return new_points

    def apply_conv(self, points: torch.Tensor, conv: nn.Module):
        batch, channels, n_samples, _ = points.shape
        # Shuffle the representations
        if self.patch_size > 1:
            # TODO shuffle deterministically when not self.training
            _, indices = torch.rand(batch, channels, n_samples, 1, device=points.device).sort(dim=2)
            points = torch.gather(points, 2, torch.broadcast_to(indices, points.shape))
        return conv(points)