File size: 6,516 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import numpy as np
import torch

from shap_e.rendering.view_data import ProjectiveCamera


@dataclass
class DifferentiableCamera(ABC):
    """
    An object describing how a camera corresponds to pixels in an image.
    """

    @abstractmethod
    def camera_rays(self, coords: torch.Tensor) -> torch.Tensor:
        """
        For every (x, y) coordinate in a rendered image, compute the ray of the
        corresponding pixel.

        :param coords: an [N x ... x 2] integer array of 2D image coordinates.
        :return: an [N x ... x 2 x 3] array of [2 x 3] (origin, direction) tuples.
                 The direction should always be unit length.
        """

    @abstractmethod
    def resize_image(self, width: int, height: int) -> "DifferentiableCamera":
        """
        Creates a new camera with the same intrinsics and direction as this one,
        but with resized image dimensions.
        """


@dataclass
class DifferentiableProjectiveCamera(DifferentiableCamera):
    """
    Implements a batch, differentiable, standard pinhole camera
    """

    origin: torch.Tensor  # [batch_size x 3]
    x: torch.Tensor  # [batch_size x 3]
    y: torch.Tensor  # [batch_size x 3]
    z: torch.Tensor  # [batch_size x 3]
    width: int
    height: int
    x_fov: float
    y_fov: float

    def __post_init__(self):
        assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
        assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
        assert (
            len(self.x.shape)
            == len(self.y.shape)
            == len(self.z.shape)
            == len(self.origin.shape)
            == 2
        )

    def resolution(self):
        return torch.from_numpy(np.array([self.width, self.height], dtype=np.float32))

    def fov(self):
        return torch.from_numpy(np.array([self.x_fov, self.y_fov], dtype=np.float32))

    def image_coords(self) -> torch.Tensor:
        """
        :return: coords of shape (width * height, 2)
        """
        pixel_indices = torch.arange(self.height * self.width)
        coords = torch.stack(
            [
                pixel_indices % self.width,
                torch.div(pixel_indices, self.width, rounding_mode="trunc"),
            ],
            axis=1,
        )
        return coords

    def camera_rays(self, coords: torch.Tensor) -> torch.Tensor:
        # import pdb; pdb.set_trace()
        batch_size, *shape, n_coords = coords.shape
        assert n_coords == 2
        assert batch_size == self.origin.shape[0]
        flat = coords.view(batch_size, -1, 2)

        res = self.resolution().to(flat.device)
        fov = self.fov().to(flat.device)

        fracs = (flat.float() / (res - 1)) * 2 - 1
        fracs = fracs * torch.tan(fov / 2)

        fracs = fracs.view(batch_size, -1, 2)
        directions = (
            self.z.view(batch_size, 1, 3)
            + self.x.view(batch_size, 1, 3) * fracs[:, :, :1]
            + self.y.view(batch_size, 1, 3) * fracs[:, :, 1:]
        )
        directions = directions / directions.norm(dim=-1, keepdim=True)
        rays = torch.stack(
            [
                torch.broadcast_to(
                    self.origin.view(batch_size, 1, 3), [batch_size, directions.shape[1], 3]
                ),
                directions,
            ],
            dim=2,
        )
        return rays.view(batch_size, *shape, 2, 3)

    def resize_image(self, width: int, height: int) -> "DifferentiableProjectiveCamera":
        """
        Creates a new camera for the resized view assuming the aspect ratio does not change.
        """
        assert width * self.height == height * self.width, "The aspect ratio should not change."
        return DifferentiableProjectiveCamera(
            origin=self.origin,
            x=self.x,
            y=self.y,
            z=self.z,
            width=width,
            height=height,
            x_fov=self.x_fov,
            y_fov=self.y_fov,
        )


@dataclass
class DifferentiableCameraBatch(ABC):
    """
    Annotate a differentiable camera with a multi-dimensional batch shape.
    """

    shape: Tuple[int]
    flat_camera: DifferentiableCamera


def normalize(vec: torch.Tensor) -> torch.Tensor:
    return vec / vec.norm(dim=-1, keepdim=True)


def project_out(vec1: torch.Tensor, vec2: torch.Tensor) -> torch.Tensor:
    """
    Removes the vec2 component from vec1
    """
    vec2 = normalize(vec2)
    proj = (vec1 * vec2).sum(dim=-1, keepdim=True)
    return vec1 - proj * vec2


def camera_orientation(toward: torch.Tensor, up: Optional[torch.Tensor] = None) -> torch.Tensor:
    """
    :param toward: [batch_size x 3] unit vector from camera position to the object
    :param up: Optional [batch_size x 3] specifying the physical up direction in the world frame.
    :return: [batch_size x 3 x 3]
    """

    if up is None:
        up = torch.zeros_like(toward)
        up[:, 2] = 1

    assert len(toward.shape) == 2
    assert toward.shape[1] == 3

    assert len(up.shape) == 2
    assert up.shape[1] == 3

    z = toward / toward.norm(dim=-1, keepdim=True)
    y = -normalize(project_out(up, toward))
    x = torch.cross(y, z, dim=1)
    return torch.stack([x, y, z], dim=1)


def projective_camera_frame(
    origin: torch.Tensor,
    toward: torch.Tensor,
    camera_params: Union[ProjectiveCamera, DifferentiableProjectiveCamera],
) -> DifferentiableProjectiveCamera:
    """
    Given the origin and the direction of a view, return a differentiable
    projective camera with the given parameters.

    TODO: We need to support the rotation of the camera frame about the
    `toward` vector to fully implement 6 degrees of freedom.
    """
    rot = camera_orientation(toward)
    camera = DifferentiableProjectiveCamera(
        origin=origin,
        x=rot[:, 0],
        y=rot[:, 1],
        z=rot[:, 2],
        width=camera_params.width,
        height=camera_params.height,
        x_fov=camera_params.x_fov,
        y_fov=camera_params.y_fov,
    )
    return camera


@torch.no_grad()
def get_image_coords(width, height) -> torch.Tensor:
    pixel_indices = torch.arange(height * width)
    # torch throws warnings for pixel_indices // width
    pixel_indices_div = torch.div(pixel_indices, width, rounding_mode="trunc")
    coords = torch.stack([pixel_indices % width, pixel_indices_div], dim=1)
    return coords