Spaces:
Runtime error
Runtime error
File size: 11,180 Bytes
19c4ddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
from functools import partial
from typing import Any, Dict, Optional
import torch
from shap_e.models.nn.meta import subdict
from shap_e.models.renderer import RayRenderer
from shap_e.models.volume import Volume
from shap_e.util.collections import AttrDict
from .model import NeRFModel
from .ray import RayVolumeIntegral, StratifiedRaySampler, render_rays
class TwoStepNeRFRenderer(RayRenderer):
"""
Coarse and fine-grained rendering as proposed by NeRF. This class
additionally supports background rendering like NeRF++.
"""
def __init__(
self,
n_coarse_samples: int,
n_fine_samples: int,
void_model: NeRFModel,
fine_model: NeRFModel,
volume: Volume,
coarse_model: Optional[NeRFModel] = None,
coarse_background_model: Optional[NeRFModel] = None,
fine_background_model: Optional[NeRFModel] = None,
outer_volume: Optional[Volume] = None,
foreground_stratified_depth_sampling_mode: str = "linear",
background_stratified_depth_sampling_mode: str = "linear",
importance_sampling_options: Optional[Dict[str, Any]] = None,
channel_scale: float = 255,
device: torch.device = torch.device("cuda"),
**kwargs,
):
"""
:param outer_volume: is where distant objects are encoded.
"""
super().__init__(**kwargs)
if coarse_model is None:
assert (
fine_background_model is None or coarse_background_model is None
), "models should be shared for both fg and bg"
self.n_coarse_samples = n_coarse_samples
self.n_fine_samples = n_fine_samples
self.void_model = void_model
self.coarse_model = coarse_model
self.fine_model = fine_model
self.volume = volume
self.coarse_background_model = coarse_background_model
self.fine_background_model = fine_background_model
self.outer_volume = outer_volume
self.foreground_stratified_depth_sampling_mode = foreground_stratified_depth_sampling_mode
self.background_stratified_depth_sampling_mode = background_stratified_depth_sampling_mode
self.importance_sampling_options = AttrDict(importance_sampling_options or {})
self.channel_scale = channel_scale
self.device = device
self.to(device)
if self.coarse_background_model is not None:
assert self.fine_background_model is not None
assert self.outer_volume is not None
def render_rays(
self,
batch: Dict,
params: Optional[Dict] = None,
options: Optional[Dict] = None,
) -> AttrDict:
params = self.update(params)
batch = AttrDict(batch)
if options is None:
options = AttrDict()
options.setdefault("render_background", True)
options.setdefault("render_with_direction", True)
options.setdefault("n_coarse_samples", self.n_coarse_samples)
options.setdefault("n_fine_samples", self.n_fine_samples)
options.setdefault(
"foreground_stratified_depth_sampling_mode",
self.foreground_stratified_depth_sampling_mode,
)
options.setdefault(
"background_stratified_depth_sampling_mode",
self.background_stratified_depth_sampling_mode,
)
shared = self.coarse_model is None
# First, render rays using the coarse models with stratified ray samples.
coarse_model, coarse_key = (
(self.fine_model, "fine_model") if shared else (self.coarse_model, "coarse_model")
)
coarse_model = partial(
coarse_model,
params=subdict(params, coarse_key),
options=options,
)
parts = [
RayVolumeIntegral(
model=coarse_model,
volume=self.volume,
sampler=StratifiedRaySampler(
depth_mode=options.foreground_stratified_depth_sampling_mode,
),
n_samples=options.n_coarse_samples,
),
]
if options.render_background and self.outer_volume is not None:
coarse_background_model, coarse_background_key = (
(self.fine_background_model, "fine_background_model")
if shared
else (self.coarse_background_model, "coarse_background_model")
)
coarse_background_model = partial(
coarse_background_model,
params=subdict(params, coarse_background_key),
options=options,
)
parts.append(
RayVolumeIntegral(
model=coarse_background_model,
volume=self.outer_volume,
sampler=StratifiedRaySampler(
depth_mode=options.background_stratified_depth_sampling_mode,
),
n_samples=options.n_coarse_samples,
)
)
coarse_results, samplers, coarse_raw_outputs = render_rays(
batch.rays,
parts,
partial(self.void_model, options=options),
shared=shared,
render_with_direction=options.render_with_direction,
importance_sampling_options=AttrDict(self.importance_sampling_options),
)
# Then, render rays using the fine models with importance-weighted ray samples.
fine_model = partial(
self.fine_model,
params=subdict(params, "fine_model"),
options=options,
)
parts = [
RayVolumeIntegral(
model=fine_model,
volume=self.volume,
sampler=samplers[0],
n_samples=options.n_fine_samples,
),
]
if options.render_background and self.outer_volume is not None:
fine_background_model = partial(
self.fine_background_model,
params=subdict(params, "fine_background_model"),
options=options,
)
parts.append(
RayVolumeIntegral(
model=fine_background_model,
volume=self.outer_volume,
sampler=samplers[1],
n_samples=options.n_fine_samples,
)
)
fine_results, *_ = render_rays(
batch.rays,
parts,
partial(self.void_model, options=options),
shared=shared,
prev_raw_outputs=coarse_raw_outputs,
render_with_direction=options.render_with_direction,
)
# Combine results
aux_losses = fine_results.output.aux_losses.copy()
for key, val in coarse_results.output.aux_losses.items():
aux_losses[key + "_coarse"] = val
return AttrDict(
channels=fine_results.output.channels * self.channel_scale,
channels_coarse=coarse_results.output.channels * self.channel_scale,
distances=fine_results.output.distances,
transmittance=fine_results.transmittance,
transmittance_coarse=coarse_results.transmittance,
t0=fine_results.volume_range.t0,
t1=fine_results.volume_range.t1,
intersected=fine_results.volume_range.intersected,
aux_losses=aux_losses,
)
class OneStepNeRFRenderer(RayRenderer):
"""
Renders rays using stratified sampling only unlike vanilla NeRF.
The same setup as NeRF++.
"""
def __init__(
self,
n_samples: int,
void_model: NeRFModel,
foreground_model: NeRFModel,
volume: Volume,
background_model: Optional[NeRFModel] = None,
outer_volume: Optional[Volume] = None,
foreground_stratified_depth_sampling_mode: str = "linear",
background_stratified_depth_sampling_mode: str = "linear",
channel_scale: float = 255,
device: torch.device = torch.device("cuda"),
**kwargs,
):
super().__init__(**kwargs)
self.n_samples = n_samples
self.void_model = void_model
self.foreground_model = foreground_model
self.volume = volume
self.background_model = background_model
self.outer_volume = outer_volume
self.foreground_stratified_depth_sampling_mode = foreground_stratified_depth_sampling_mode
self.background_stratified_depth_sampling_mode = background_stratified_depth_sampling_mode
self.channel_scale = channel_scale
self.device = device
self.to(device)
def render_rays(
self,
batch: Dict,
params: Optional[Dict] = None,
options: Optional[Dict] = None,
) -> AttrDict:
params = self.update(params)
batch = AttrDict(batch)
if options is None:
options = AttrDict()
options.setdefault("render_background", True)
options.setdefault("render_with_direction", True)
options.setdefault("n_samples", self.n_samples)
options.setdefault(
"foreground_stratified_depth_sampling_mode",
self.foreground_stratified_depth_sampling_mode,
)
options.setdefault(
"background_stratified_depth_sampling_mode",
self.background_stratified_depth_sampling_mode,
)
foreground_model = partial(
self.foreground_model,
params=subdict(params, "foreground_model"),
options=options,
)
parts = [
RayVolumeIntegral(
model=foreground_model,
volume=self.volume,
sampler=StratifiedRaySampler(
depth_mode=options.foreground_stratified_depth_sampling_mode
),
n_samples=options.n_samples,
),
]
if options.render_background and self.outer_volume is not None:
background_model = partial(
self.background_model,
params=subdict(params, "background_model"),
options=options,
)
parts.append(
RayVolumeIntegral(
model=background_model,
volume=self.outer_volume,
sampler=StratifiedRaySampler(
depth_mode=options.background_stratified_depth_sampling_mode
),
n_samples=options.n_samples,
)
)
results, *_ = render_rays(
batch.rays,
parts,
self.void_model,
render_with_direction=options.render_with_direction,
)
return AttrDict(
channels=results.output.channels * self.channel_scale,
distances=results.output.distances,
transmittance=results.transmittance,
t0=results.volume_range.t0,
t1=results.volume_range.t1,
intersected=results.volume_range.intersected,
aux_losses=results.output.aux_losses,
)
|