File size: 11,180 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from functools import partial
from typing import Any, Dict, Optional

import torch

from shap_e.models.nn.meta import subdict
from shap_e.models.renderer import RayRenderer
from shap_e.models.volume import Volume
from shap_e.util.collections import AttrDict

from .model import NeRFModel
from .ray import RayVolumeIntegral, StratifiedRaySampler, render_rays


class TwoStepNeRFRenderer(RayRenderer):
    """
    Coarse and fine-grained rendering as proposed by NeRF. This class
    additionally supports background rendering like NeRF++.
    """

    def __init__(
        self,
        n_coarse_samples: int,
        n_fine_samples: int,
        void_model: NeRFModel,
        fine_model: NeRFModel,
        volume: Volume,
        coarse_model: Optional[NeRFModel] = None,
        coarse_background_model: Optional[NeRFModel] = None,
        fine_background_model: Optional[NeRFModel] = None,
        outer_volume: Optional[Volume] = None,
        foreground_stratified_depth_sampling_mode: str = "linear",
        background_stratified_depth_sampling_mode: str = "linear",
        importance_sampling_options: Optional[Dict[str, Any]] = None,
        channel_scale: float = 255,
        device: torch.device = torch.device("cuda"),
        **kwargs,
    ):
        """
        :param outer_volume: is where distant objects are encoded.
        """
        super().__init__(**kwargs)

        if coarse_model is None:
            assert (
                fine_background_model is None or coarse_background_model is None
            ), "models should be shared for both fg and bg"

        self.n_coarse_samples = n_coarse_samples
        self.n_fine_samples = n_fine_samples
        self.void_model = void_model
        self.coarse_model = coarse_model
        self.fine_model = fine_model
        self.volume = volume
        self.coarse_background_model = coarse_background_model
        self.fine_background_model = fine_background_model
        self.outer_volume = outer_volume
        self.foreground_stratified_depth_sampling_mode = foreground_stratified_depth_sampling_mode
        self.background_stratified_depth_sampling_mode = background_stratified_depth_sampling_mode
        self.importance_sampling_options = AttrDict(importance_sampling_options or {})
        self.channel_scale = channel_scale
        self.device = device
        self.to(device)

        if self.coarse_background_model is not None:
            assert self.fine_background_model is not None
            assert self.outer_volume is not None

    def render_rays(
        self,
        batch: Dict,
        params: Optional[Dict] = None,
        options: Optional[Dict] = None,
    ) -> AttrDict:
        params = self.update(params)

        batch = AttrDict(batch)
        if options is None:
            options = AttrDict()
        options.setdefault("render_background", True)
        options.setdefault("render_with_direction", True)
        options.setdefault("n_coarse_samples", self.n_coarse_samples)
        options.setdefault("n_fine_samples", self.n_fine_samples)
        options.setdefault(
            "foreground_stratified_depth_sampling_mode",
            self.foreground_stratified_depth_sampling_mode,
        )
        options.setdefault(
            "background_stratified_depth_sampling_mode",
            self.background_stratified_depth_sampling_mode,
        )

        shared = self.coarse_model is None

        # First, render rays using the coarse models with stratified ray samples.
        coarse_model, coarse_key = (
            (self.fine_model, "fine_model") if shared else (self.coarse_model, "coarse_model")
        )
        coarse_model = partial(
            coarse_model,
            params=subdict(params, coarse_key),
            options=options,
        )
        parts = [
            RayVolumeIntegral(
                model=coarse_model,
                volume=self.volume,
                sampler=StratifiedRaySampler(
                    depth_mode=options.foreground_stratified_depth_sampling_mode,
                ),
                n_samples=options.n_coarse_samples,
            ),
        ]
        if options.render_background and self.outer_volume is not None:
            coarse_background_model, coarse_background_key = (
                (self.fine_background_model, "fine_background_model")
                if shared
                else (self.coarse_background_model, "coarse_background_model")
            )
            coarse_background_model = partial(
                coarse_background_model,
                params=subdict(params, coarse_background_key),
                options=options,
            )
            parts.append(
                RayVolumeIntegral(
                    model=coarse_background_model,
                    volume=self.outer_volume,
                    sampler=StratifiedRaySampler(
                        depth_mode=options.background_stratified_depth_sampling_mode,
                    ),
                    n_samples=options.n_coarse_samples,
                )
            )
        coarse_results, samplers, coarse_raw_outputs = render_rays(
            batch.rays,
            parts,
            partial(self.void_model, options=options),
            shared=shared,
            render_with_direction=options.render_with_direction,
            importance_sampling_options=AttrDict(self.importance_sampling_options),
        )

        # Then, render rays using the fine models with importance-weighted ray samples.
        fine_model = partial(
            self.fine_model,
            params=subdict(params, "fine_model"),
            options=options,
        )
        parts = [
            RayVolumeIntegral(
                model=fine_model,
                volume=self.volume,
                sampler=samplers[0],
                n_samples=options.n_fine_samples,
            ),
        ]
        if options.render_background and self.outer_volume is not None:
            fine_background_model = partial(
                self.fine_background_model,
                params=subdict(params, "fine_background_model"),
                options=options,
            )
            parts.append(
                RayVolumeIntegral(
                    model=fine_background_model,
                    volume=self.outer_volume,
                    sampler=samplers[1],
                    n_samples=options.n_fine_samples,
                )
            )
        fine_results, *_ = render_rays(
            batch.rays,
            parts,
            partial(self.void_model, options=options),
            shared=shared,
            prev_raw_outputs=coarse_raw_outputs,
            render_with_direction=options.render_with_direction,
        )

        # Combine results
        aux_losses = fine_results.output.aux_losses.copy()
        for key, val in coarse_results.output.aux_losses.items():
            aux_losses[key + "_coarse"] = val

        return AttrDict(
            channels=fine_results.output.channels * self.channel_scale,
            channels_coarse=coarse_results.output.channels * self.channel_scale,
            distances=fine_results.output.distances,
            transmittance=fine_results.transmittance,
            transmittance_coarse=coarse_results.transmittance,
            t0=fine_results.volume_range.t0,
            t1=fine_results.volume_range.t1,
            intersected=fine_results.volume_range.intersected,
            aux_losses=aux_losses,
        )


class OneStepNeRFRenderer(RayRenderer):
    """
    Renders rays using stratified sampling only unlike vanilla NeRF.
    The same setup as NeRF++.
    """

    def __init__(
        self,
        n_samples: int,
        void_model: NeRFModel,
        foreground_model: NeRFModel,
        volume: Volume,
        background_model: Optional[NeRFModel] = None,
        outer_volume: Optional[Volume] = None,
        foreground_stratified_depth_sampling_mode: str = "linear",
        background_stratified_depth_sampling_mode: str = "linear",
        channel_scale: float = 255,
        device: torch.device = torch.device("cuda"),
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.n_samples = n_samples
        self.void_model = void_model
        self.foreground_model = foreground_model
        self.volume = volume
        self.background_model = background_model
        self.outer_volume = outer_volume
        self.foreground_stratified_depth_sampling_mode = foreground_stratified_depth_sampling_mode
        self.background_stratified_depth_sampling_mode = background_stratified_depth_sampling_mode
        self.channel_scale = channel_scale
        self.device = device
        self.to(device)

    def render_rays(
        self,
        batch: Dict,
        params: Optional[Dict] = None,
        options: Optional[Dict] = None,
    ) -> AttrDict:
        params = self.update(params)

        batch = AttrDict(batch)
        if options is None:
            options = AttrDict()
        options.setdefault("render_background", True)
        options.setdefault("render_with_direction", True)
        options.setdefault("n_samples", self.n_samples)
        options.setdefault(
            "foreground_stratified_depth_sampling_mode",
            self.foreground_stratified_depth_sampling_mode,
        )
        options.setdefault(
            "background_stratified_depth_sampling_mode",
            self.background_stratified_depth_sampling_mode,
        )

        foreground_model = partial(
            self.foreground_model,
            params=subdict(params, "foreground_model"),
            options=options,
        )
        parts = [
            RayVolumeIntegral(
                model=foreground_model,
                volume=self.volume,
                sampler=StratifiedRaySampler(
                    depth_mode=options.foreground_stratified_depth_sampling_mode
                ),
                n_samples=options.n_samples,
            ),
        ]
        if options.render_background and self.outer_volume is not None:
            background_model = partial(
                self.background_model,
                params=subdict(params, "background_model"),
                options=options,
            )
            parts.append(
                RayVolumeIntegral(
                    model=background_model,
                    volume=self.outer_volume,
                    sampler=StratifiedRaySampler(
                        depth_mode=options.background_stratified_depth_sampling_mode
                    ),
                    n_samples=options.n_samples,
                )
            )
        results, *_ = render_rays(
            batch.rays,
            parts,
            self.void_model,
            render_with_direction=options.render_with_direction,
        )

        return AttrDict(
            channels=results.output.channels * self.channel_scale,
            distances=results.output.distances,
            transmittance=results.transmittance,
            t0=results.volume_range.t0,
            t1=results.volume_range.t1,
            intersected=results.volume_range.intersected,
            aux_losses=results.output.aux_losses,
        )