Spaces:
Runtime error
Runtime error
File size: 8,586 Bytes
19c4ddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import tempfile
from contextlib import contextmanager
from typing import Iterator, Optional, Union
import blobfile as bf
import numpy as np
import torch
from PIL import Image
from shap_e.rendering.blender.render import render_mesh, render_model
from shap_e.rendering.blender.view_data import BlenderViewData
from shap_e.rendering.mesh import TriMesh
from shap_e.rendering.point_cloud import PointCloud
from shap_e.rendering.view_data import ViewData
from shap_e.util.collections import AttrDict
from shap_e.util.image_util import center_crop, get_alpha, remove_alpha, resize
def load_or_create_multimodal_batch(
device: torch.device,
*,
mesh_path: Optional[str] = None,
model_path: Optional[str] = None,
cache_dir: Optional[str] = None,
point_count: int = 2**14,
random_sample_count: int = 2**19,
pc_num_views: int = 40,
mv_light_mode: Optional[str] = None,
mv_num_views: int = 20,
mv_image_size: int = 512,
mv_alpha_removal: str = "black",
verbose: bool = False,
) -> AttrDict:
if verbose:
print("creating point cloud...")
pc = load_or_create_pc(
mesh_path=mesh_path,
model_path=model_path,
cache_dir=cache_dir,
random_sample_count=random_sample_count,
point_count=point_count,
num_views=pc_num_views,
verbose=verbose,
)
raw_pc = np.concatenate([pc.coords, pc.select_channels(["R", "G", "B"])], axis=-1)
encode_me = torch.from_numpy(raw_pc).float().to(device)
batch = AttrDict(points=encode_me.t()[None])
if mv_light_mode:
if verbose:
print("creating multiview...")
with load_or_create_multiview(
mesh_path=mesh_path,
model_path=model_path,
cache_dir=cache_dir,
num_views=mv_num_views,
extract_material=False,
light_mode=mv_light_mode,
verbose=verbose,
) as mv:
cameras, views, view_alphas, depths = [], [], [], []
for view_idx in range(mv.num_views):
camera, view = mv.load_view(
view_idx,
["R", "G", "B", "A"] if "A" in mv.channel_names else ["R", "G", "B"],
)
depth = None
if "D" in mv.channel_names:
_, depth = mv.load_view(view_idx, ["D"])
depth = process_depth(depth, mv_image_size)
view, alpha = process_image(
np.round(view * 255.0).astype(np.uint8), mv_alpha_removal, mv_image_size
)
camera = camera.center_crop().resize_image(mv_image_size, mv_image_size)
cameras.append(camera)
views.append(view)
view_alphas.append(alpha)
depths.append(depth)
batch.depths = [depths]
batch.views = [views]
batch.view_alphas = [view_alphas]
batch.cameras = [cameras]
return normalize_input_batch(batch, pc_scale=2.0, color_scale=1.0 / 255.0)
def load_or_create_pc(
*,
mesh_path: Optional[str],
model_path: Optional[str],
cache_dir: Optional[str],
random_sample_count: int,
point_count: int,
num_views: int,
verbose: bool = False,
) -> PointCloud:
assert (model_path is not None) ^ (
mesh_path is not None
), "must specify exactly one of model_path or mesh_path"
path = model_path if model_path is not None else mesh_path
if cache_dir is not None:
cache_path = bf.join(
cache_dir,
f"pc_{bf.basename(path)}_mat_{num_views}_{random_sample_count}_{point_count}.npz",
)
if bf.exists(cache_path):
return PointCloud.load(cache_path)
else:
cache_path = None
with load_or_create_multiview(
mesh_path=mesh_path,
model_path=model_path,
cache_dir=cache_dir,
num_views=num_views,
verbose=verbose,
) as mv:
if verbose:
print("extracting point cloud from multiview...")
pc = mv_to_pc(
multiview=mv, random_sample_count=random_sample_count, point_count=point_count
)
if cache_path is not None:
pc.save(cache_path)
return pc
@contextmanager
def load_or_create_multiview(
*,
mesh_path: Optional[str],
model_path: Optional[str],
cache_dir: Optional[str],
num_views: int = 20,
extract_material: bool = True,
light_mode: Optional[str] = None,
verbose: bool = False,
) -> Iterator[BlenderViewData]:
assert (model_path is not None) ^ (
mesh_path is not None
), "must specify exactly one of model_path or mesh_path"
path = model_path if model_path is not None else mesh_path
if extract_material:
assert light_mode is None, "light_mode is ignored when extract_material=True"
else:
assert light_mode is not None, "must specify light_mode when extract_material=False"
if cache_dir is not None:
if extract_material:
cache_path = bf.join(cache_dir, f"mv_{bf.basename(path)}_mat_{num_views}.zip")
else:
cache_path = bf.join(cache_dir, f"mv_{bf.basename(path)}_{light_mode}_{num_views}.zip")
if bf.exists(cache_path):
with bf.BlobFile(cache_path, "rb") as f:
yield BlenderViewData(f)
return
else:
cache_path = None
common_kwargs = dict(
fast_mode=True,
extract_material=extract_material,
camera_pose="random",
light_mode=light_mode or "uniform",
verbose=verbose,
)
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_path = bf.join(tmp_dir, "out.zip")
if mesh_path is not None:
mesh = TriMesh.load(mesh_path)
render_mesh(
mesh=mesh,
output_path=tmp_path,
num_images=num_views,
backend="CYCLES",
**common_kwargs,
)
elif model_path is not None:
render_model(
model_path,
output_path=tmp_path,
num_images=num_views,
backend="CYCLES",
**common_kwargs,
)
if cache_path is not None:
bf.copy(tmp_path, cache_path)
with bf.BlobFile(tmp_path, "rb") as f:
yield BlenderViewData(f)
def mv_to_pc(multiview: ViewData, random_sample_count: int, point_count: int) -> PointCloud:
pc = PointCloud.from_rgbd(multiview)
# Handle empty samples.
if len(pc.coords) == 0:
pc = PointCloud(
coords=np.zeros([1, 3]),
channels=dict(zip("RGB", np.zeros([3, 1]))),
)
while len(pc.coords) < point_count:
pc = pc.combine(pc)
# Prevent duplicate points; some models may not like it.
pc.coords += np.random.normal(size=pc.coords.shape) * 1e-4
pc = pc.random_sample(random_sample_count)
pc = pc.farthest_point_sample(point_count, average_neighbors=True)
return pc
def normalize_input_batch(batch: AttrDict, *, pc_scale: float, color_scale: float) -> AttrDict:
res = batch.copy()
scale_vec = torch.tensor([*([pc_scale] * 3), *([color_scale] * 3)], device=batch.points.device)
res.points = res.points * scale_vec[:, None]
if "cameras" in res:
res.cameras = [[cam.scale_scene(pc_scale) for cam in cams] for cams in res.cameras]
if "depths" in res:
res.depths = [[depth * pc_scale for depth in depths] for depths in res.depths]
return res
def process_depth(depth_img: np.ndarray, image_size: int) -> np.ndarray:
depth_img = center_crop(depth_img)
depth_img = resize(depth_img, width=image_size, height=image_size)
return np.squeeze(depth_img)
def process_image(
img_or_img_arr: Union[Image.Image, np.ndarray], alpha_removal: str, image_size: int
):
if isinstance(img_or_img_arr, np.ndarray):
img = Image.fromarray(img_or_img_arr)
img_arr = img_or_img_arr
else:
img = img_or_img_arr
img_arr = np.array(img)
if len(img_arr.shape) == 2:
# Grayscale
rgb = Image.new("RGB", img.size)
rgb.paste(img)
img = rgb
img_arr = np.array(img)
img = center_crop(img)
alpha = get_alpha(img)
img = remove_alpha(img, mode=alpha_removal)
alpha = alpha.resize((image_size,) * 2, resample=Image.BILINEAR)
img = img.resize((image_size,) * 2, resample=Image.BILINEAR)
return img, alpha
|