File size: 8,586 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import tempfile
from contextlib import contextmanager
from typing import Iterator, Optional, Union

import blobfile as bf
import numpy as np
import torch
from PIL import Image

from shap_e.rendering.blender.render import render_mesh, render_model
from shap_e.rendering.blender.view_data import BlenderViewData
from shap_e.rendering.mesh import TriMesh
from shap_e.rendering.point_cloud import PointCloud
from shap_e.rendering.view_data import ViewData
from shap_e.util.collections import AttrDict
from shap_e.util.image_util import center_crop, get_alpha, remove_alpha, resize


def load_or_create_multimodal_batch(
    device: torch.device,
    *,
    mesh_path: Optional[str] = None,
    model_path: Optional[str] = None,
    cache_dir: Optional[str] = None,
    point_count: int = 2**14,
    random_sample_count: int = 2**19,
    pc_num_views: int = 40,
    mv_light_mode: Optional[str] = None,
    mv_num_views: int = 20,
    mv_image_size: int = 512,
    mv_alpha_removal: str = "black",
    verbose: bool = False,
) -> AttrDict:
    if verbose:
        print("creating point cloud...")
    pc = load_or_create_pc(
        mesh_path=mesh_path,
        model_path=model_path,
        cache_dir=cache_dir,
        random_sample_count=random_sample_count,
        point_count=point_count,
        num_views=pc_num_views,
        verbose=verbose,
    )
    raw_pc = np.concatenate([pc.coords, pc.select_channels(["R", "G", "B"])], axis=-1)
    encode_me = torch.from_numpy(raw_pc).float().to(device)
    batch = AttrDict(points=encode_me.t()[None])
    if mv_light_mode:
        if verbose:
            print("creating multiview...")
        with load_or_create_multiview(
            mesh_path=mesh_path,
            model_path=model_path,
            cache_dir=cache_dir,
            num_views=mv_num_views,
            extract_material=False,
            light_mode=mv_light_mode,
            verbose=verbose,
        ) as mv:
            cameras, views, view_alphas, depths = [], [], [], []
            for view_idx in range(mv.num_views):
                camera, view = mv.load_view(
                    view_idx,
                    ["R", "G", "B", "A"] if "A" in mv.channel_names else ["R", "G", "B"],
                )
                depth = None
                if "D" in mv.channel_names:
                    _, depth = mv.load_view(view_idx, ["D"])
                    depth = process_depth(depth, mv_image_size)
                view, alpha = process_image(
                    np.round(view * 255.0).astype(np.uint8), mv_alpha_removal, mv_image_size
                )
                camera = camera.center_crop().resize_image(mv_image_size, mv_image_size)
                cameras.append(camera)
                views.append(view)
                view_alphas.append(alpha)
                depths.append(depth)
            batch.depths = [depths]
            batch.views = [views]
            batch.view_alphas = [view_alphas]
            batch.cameras = [cameras]
    return normalize_input_batch(batch, pc_scale=2.0, color_scale=1.0 / 255.0)


def load_or_create_pc(
    *,
    mesh_path: Optional[str],
    model_path: Optional[str],
    cache_dir: Optional[str],
    random_sample_count: int,
    point_count: int,
    num_views: int,
    verbose: bool = False,
) -> PointCloud:

    assert (model_path is not None) ^ (
        mesh_path is not None
    ), "must specify exactly one of model_path or mesh_path"
    path = model_path if model_path is not None else mesh_path

    if cache_dir is not None:
        cache_path = bf.join(
            cache_dir,
            f"pc_{bf.basename(path)}_mat_{num_views}_{random_sample_count}_{point_count}.npz",
        )
        if bf.exists(cache_path):
            return PointCloud.load(cache_path)
    else:
        cache_path = None

    with load_or_create_multiview(
        mesh_path=mesh_path,
        model_path=model_path,
        cache_dir=cache_dir,
        num_views=num_views,
        verbose=verbose,
    ) as mv:
        if verbose:
            print("extracting point cloud from multiview...")
        pc = mv_to_pc(
            multiview=mv, random_sample_count=random_sample_count, point_count=point_count
        )
        if cache_path is not None:
            pc.save(cache_path)
        return pc


@contextmanager
def load_or_create_multiview(
    *,
    mesh_path: Optional[str],
    model_path: Optional[str],
    cache_dir: Optional[str],
    num_views: int = 20,
    extract_material: bool = True,
    light_mode: Optional[str] = None,
    verbose: bool = False,
) -> Iterator[BlenderViewData]:

    assert (model_path is not None) ^ (
        mesh_path is not None
    ), "must specify exactly one of model_path or mesh_path"
    path = model_path if model_path is not None else mesh_path

    if extract_material:
        assert light_mode is None, "light_mode is ignored when extract_material=True"
    else:
        assert light_mode is not None, "must specify light_mode when extract_material=False"

    if cache_dir is not None:
        if extract_material:
            cache_path = bf.join(cache_dir, f"mv_{bf.basename(path)}_mat_{num_views}.zip")
        else:
            cache_path = bf.join(cache_dir, f"mv_{bf.basename(path)}_{light_mode}_{num_views}.zip")
        if bf.exists(cache_path):
            with bf.BlobFile(cache_path, "rb") as f:
                yield BlenderViewData(f)
                return
    else:
        cache_path = None

    common_kwargs = dict(
        fast_mode=True,
        extract_material=extract_material,
        camera_pose="random",
        light_mode=light_mode or "uniform",
        verbose=verbose,
    )

    with tempfile.TemporaryDirectory() as tmp_dir:
        tmp_path = bf.join(tmp_dir, "out.zip")
        if mesh_path is not None:
            mesh = TriMesh.load(mesh_path)
            render_mesh(
                mesh=mesh,
                output_path=tmp_path,
                num_images=num_views,
                backend="CYCLES",
                **common_kwargs,
            )
        elif model_path is not None:
            render_model(
                model_path,
                output_path=tmp_path,
                num_images=num_views,
                backend="CYCLES",
                **common_kwargs,
            )
        if cache_path is not None:
            bf.copy(tmp_path, cache_path)
        with bf.BlobFile(tmp_path, "rb") as f:
            yield BlenderViewData(f)


def mv_to_pc(multiview: ViewData, random_sample_count: int, point_count: int) -> PointCloud:
    pc = PointCloud.from_rgbd(multiview)

    # Handle empty samples.
    if len(pc.coords) == 0:
        pc = PointCloud(
            coords=np.zeros([1, 3]),
            channels=dict(zip("RGB", np.zeros([3, 1]))),
        )
    while len(pc.coords) < point_count:
        pc = pc.combine(pc)
        # Prevent duplicate points; some models may not like it.
        pc.coords += np.random.normal(size=pc.coords.shape) * 1e-4

    pc = pc.random_sample(random_sample_count)
    pc = pc.farthest_point_sample(point_count, average_neighbors=True)

    return pc


def normalize_input_batch(batch: AttrDict, *, pc_scale: float, color_scale: float) -> AttrDict:
    res = batch.copy()
    scale_vec = torch.tensor([*([pc_scale] * 3), *([color_scale] * 3)], device=batch.points.device)
    res.points = res.points * scale_vec[:, None]

    if "cameras" in res:
        res.cameras = [[cam.scale_scene(pc_scale) for cam in cams] for cams in res.cameras]

    if "depths" in res:
        res.depths = [[depth * pc_scale for depth in depths] for depths in res.depths]

    return res


def process_depth(depth_img: np.ndarray, image_size: int) -> np.ndarray:
    depth_img = center_crop(depth_img)
    depth_img = resize(depth_img, width=image_size, height=image_size)
    return np.squeeze(depth_img)


def process_image(
    img_or_img_arr: Union[Image.Image, np.ndarray], alpha_removal: str, image_size: int
):
    if isinstance(img_or_img_arr, np.ndarray):
        img = Image.fromarray(img_or_img_arr)
        img_arr = img_or_img_arr
    else:
        img = img_or_img_arr
        img_arr = np.array(img)
        if len(img_arr.shape) == 2:
            # Grayscale
            rgb = Image.new("RGB", img.size)
            rgb.paste(img)
            img = rgb
            img_arr = np.array(img)

    img = center_crop(img)
    alpha = get_alpha(img)
    img = remove_alpha(img, mode=alpha_removal)
    alpha = alpha.resize((image_size,) * 2, resample=Image.BILINEAR)
    img = img.resize((image_size,) * 2, resample=Image.BILINEAR)
    return img, alpha