File size: 8,261 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import copy
import inspect
from typing import Any, Callable, List, Sequence, Tuple, Union

import numpy as np
import torch
from pytorch3d.renderer import (
    BlendParams,
    DirectionalLights,
    FoVPerspectiveCameras,
    MeshRasterizer,
    MeshRenderer,
    RasterizationSettings,
    SoftPhongShader,
    TexturesVertex,
)
from pytorch3d.renderer.utils import TensorProperties
from pytorch3d.structures import Meshes

from shap_e.models.nn.checkpoint import checkpoint

from .blender.constants import BASIC_AMBIENT_COLOR, BASIC_DIFFUSE_COLOR, UNIFORM_LIGHT_DIRECTION
from .torch_mesh import TorchMesh
from .view_data import ProjectiveCamera

# Using a lower value like 1e-4 seems to result in weird issues
# for our high-poly meshes.
DEFAULT_RENDER_SIGMA = 1e-5

DEFAULT_RENDER_GAMMA = 1e-4


def render_images(
    image_size: int,
    meshes: Meshes,
    cameras: Any,
    lights: Any,
    sigma: float = DEFAULT_RENDER_SIGMA,
    gamma: float = DEFAULT_RENDER_GAMMA,
    max_faces_per_bin=100000,
    faces_per_pixel=50,
    bin_size=None,
    use_checkpoint: bool = False,
) -> torch.Tensor:
    if use_checkpoint:
        # Decompose all of our arguments into a bunch of tensor lists
        # so that autograd can keep track of what the op depends on.
        verts_list = meshes.verts_list()
        faces_list = meshes.faces_list()
        assert isinstance(meshes.textures, TexturesVertex)
        assert isinstance(lights, BidirectionalLights)
        textures = meshes.textures.verts_features_padded()
        light_vecs, light_fn = _deconstruct_tensor_props(lights)
        camera_vecs, camera_fn = _deconstruct_tensor_props(cameras)

        def ckpt_fn(
            *args: torch.Tensor,
            num_verts=len(verts_list),
            num_light_vecs=len(light_vecs),
            num_camera_vecs=len(camera_vecs),
            light_fn=light_fn,
            camera_fn=camera_fn,
            faces_list=faces_list
        ):
            args = list(args)
            verts_list = args[:num_verts]
            del args[:num_verts]
            light_vecs = args[:num_light_vecs]
            del args[:num_light_vecs]
            camera_vecs = args[:num_camera_vecs]
            del args[:num_camera_vecs]
            textures = args.pop(0)

            meshes = Meshes(verts=verts_list, faces=faces_list, textures=TexturesVertex(textures))
            lights = light_fn(light_vecs)
            cameras = camera_fn(camera_vecs)
            return render_images(
                image_size=image_size,
                meshes=meshes,
                cameras=cameras,
                lights=lights,
                sigma=sigma,
                gamma=gamma,
                max_faces_per_bin=max_faces_per_bin,
                faces_per_pixel=faces_per_pixel,
                bin_size=bin_size,
                use_checkpoint=False,
            )

        result = checkpoint(ckpt_fn, (*verts_list, *light_vecs, *camera_vecs, textures), (), True)
    else:
        raster_settings_soft = RasterizationSettings(
            image_size=image_size,
            blur_radius=np.log(1.0 / 1e-4 - 1.0) * sigma,
            faces_per_pixel=faces_per_pixel,
            max_faces_per_bin=max_faces_per_bin,
            bin_size=bin_size,
            perspective_correct=False,
        )
        renderer = MeshRenderer(
            rasterizer=MeshRasterizer(cameras=cameras, raster_settings=raster_settings_soft),
            shader=SoftPhongShader(
                device=meshes.device,
                cameras=cameras,
                lights=lights,
                blend_params=BlendParams(sigma=sigma, gamma=gamma, background_color=(0, 0, 0)),
            ),
        )
        result = renderer(meshes)

    return result


def _deconstruct_tensor_props(
    props: TensorProperties,
) -> Tuple[List[torch.Tensor], Callable[[List[torch.Tensor]], TensorProperties]]:
    vecs = []
    names = []
    other_props = {}
    for k in dir(props):
        if k.startswith("__"):
            continue
        v = getattr(props, k)
        if inspect.ismethod(v):
            continue
        if torch.is_tensor(v):
            vecs.append(v)
            names.append(k)
        else:
            other_props[k] = v

    def recreate_fn(vecs_arg):
        other = type(props)(device=props.device)
        for k, v in other_props.items():
            setattr(other, k, copy.deepcopy(v))
        for name, vec in zip(names, vecs_arg):
            setattr(other, name, vec)
        return other

    return vecs, recreate_fn



def convert_meshes(raw_meshes: Sequence[TorchMesh], default_brightness=0.8) -> Meshes:
    meshes = Meshes(
        verts=[mesh.verts for mesh in raw_meshes], faces=[mesh.faces for mesh in raw_meshes]
    )
    rgbs = []
    for mesh in raw_meshes:
        if mesh.vertex_channels and all(k in mesh.vertex_channels for k in "RGB"):
            rgbs.append(torch.stack([mesh.vertex_channels[k] for k in "RGB"], axis=-1))
        else:
            rgbs.append(
                torch.ones(
                    len(mesh.verts) * default_brightness,
                    3,
                    device=mesh.verts.device,
                    dtype=mesh.verts.dtype,
                )
            )
    meshes.textures = TexturesVertex(verts_features=rgbs)
    return meshes


def convert_cameras(
    cameras: Sequence[ProjectiveCamera], device: torch.device
) -> FoVPerspectiveCameras:
    Rs = []
    Ts = []
    for camera in cameras:
        assert (
            camera.width == camera.height and camera.x_fov == camera.y_fov
        ), "viewports must be square"
        assert camera.x_fov == cameras[0].x_fov, "all cameras must have same field-of-view"
        R = np.stack([-camera.x, -camera.y, camera.z], axis=0).T
        T = -R.T @ camera.origin
        Rs.append(R)
        Ts.append(T)
    return FoVPerspectiveCameras(
        R=np.stack(Rs, axis=0),
        T=np.stack(Ts, axis=0),
        fov=cameras[0].x_fov,
        degrees=False,
        device=device,
    )


def convert_cameras_torch(
    origins: torch.Tensor, xs: torch.Tensor, ys: torch.Tensor, zs: torch.Tensor, fov: float
) -> FoVPerspectiveCameras:
    Rs = []
    Ts = []
    for origin, x, y, z in zip(origins, xs, ys, zs):
        R = torch.stack([-x, -y, z], axis=0).T
        T = -R.T @ origin
        Rs.append(R)
        Ts.append(T)
    return FoVPerspectiveCameras(
        R=torch.stack(Rs, dim=0),
        T=torch.stack(Ts, dim=0),
        fov=fov,
        degrees=False,
        device=origins.device,
    )


def blender_uniform_lights(
    batch_size: int,
    device: torch.device,
    ambient_color: Union[float, Tuple[float]] = BASIC_AMBIENT_COLOR,
    diffuse_color: Union[float, Tuple[float]] = BASIC_DIFFUSE_COLOR,
    specular_color: Union[float, Tuple[float]] = 0.0,
) -> "BidirectionalLights":
    """
    Create a light that attempts to match the light used by the Blender
    renderer when run with `--light_mode basic`.
    """
    if isinstance(ambient_color, float):
        ambient_color = (ambient_color,) * 3
    if isinstance(diffuse_color, float):
        diffuse_color = (diffuse_color,) * 3
    if isinstance(specular_color, float):
        specular_color = (specular_color,) * 3
    return BidirectionalLights(
        ambient_color=(ambient_color,) * batch_size,
        diffuse_color=(diffuse_color,) * batch_size,
        specular_color=(specular_color,) * batch_size,
        direction=(UNIFORM_LIGHT_DIRECTION,) * batch_size,
        device=device,
    )


class BidirectionalLights(DirectionalLights):
    """
    Adapted from here, but effectively shines the light in both positive and negative directions:
    https://github.com/facebookresearch/pytorch3d/blob/efea540bbcab56fccde6f4bc729d640a403dac56/pytorch3d/renderer/lighting.py#L159
    """

    def diffuse(self, normals, points=None) -> torch.Tensor:
        return torch.maximum(
            super().diffuse(normals, points=points), super().diffuse(-normals, points=points)
        )

    def specular(self, normals, points, camera_position, shininess) -> torch.Tensor:
        return torch.maximum(
            super().specular(normals, points, camera_position, shininess),
            super().specular(-normals, points, camera_position, shininess),
        )