Spaces:
Runtime error
Runtime error
File size: 15,280 Bytes
19c4ddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
from abc import abstractmethod
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from torch import torch
from shap_e.models.generation.perceiver import SimplePerceiver
from shap_e.models.generation.transformer import Transformer
from shap_e.models.nn.encoding import PosEmbLinear
from shap_e.rendering.view_data import ProjectiveCamera
from shap_e.util.collections import AttrDict
from .base import VectorEncoder
from .channels_encoder import DatasetIterator, sample_pcl_fps
class PointCloudTransformerEncoder(VectorEncoder):
"""
Encode point clouds using a transformer model with an extra output
token used to extract a latent vector.
"""
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
param_shapes: Dict[str, Tuple[int]],
params_proj: Dict[str, Any],
latent_bottleneck: Optional[Dict[str, Any]] = None,
d_latent: int = 512,
latent_ctx: int = 1,
input_channels: int = 6,
n_ctx: int = 1024,
width: int = 512,
layers: int = 12,
heads: int = 8,
init_scale: float = 0.25,
pos_emb: Optional[str] = None,
):
super().__init__(
device=device,
param_shapes=param_shapes,
params_proj=params_proj,
latent_bottleneck=latent_bottleneck,
d_latent=d_latent,
)
self.input_channels = input_channels
self.n_ctx = n_ctx
self.latent_ctx = latent_ctx
assert d_latent % latent_ctx == 0
self.ln_pre = nn.LayerNorm(width, device=device, dtype=dtype)
self.backbone = Transformer(
device=device,
dtype=dtype,
n_ctx=n_ctx + latent_ctx,
width=width,
layers=layers,
heads=heads,
init_scale=init_scale,
)
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
self.register_parameter(
"output_tokens",
nn.Parameter(torch.randn(latent_ctx, width, device=device, dtype=dtype)),
)
self.input_proj = PosEmbLinear(pos_emb, input_channels, width, device=device, dtype=dtype)
self.output_proj = nn.Linear(width, d_latent // latent_ctx, device=device, dtype=dtype)
def encode_to_vector(self, batch: AttrDict, options: Optional[AttrDict] = None) -> torch.Tensor:
_ = options
points = batch.points.permute(0, 2, 1) # NCL -> NLC
h = self.input_proj(points)
h = torch.cat([h, self.output_tokens[None].repeat(len(h), 1, 1)], dim=1)
h = self.ln_pre(h)
h = self.backbone(h)
h = self.ln_post(h)
h = h[:, self.n_ctx :]
h = self.output_proj(h).flatten(1)
return h
class PerceiverEncoder(VectorEncoder):
"""
Encode point clouds using a perceiver model with an extra output
token used to extract a latent vector.
"""
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
param_shapes: Dict[str, Tuple[int]],
params_proj: Dict[str, Any],
latent_bottleneck: Optional[Dict[str, Any]] = None,
d_latent: int = 512,
latent_ctx: int = 1,
width: int = 512,
layers: int = 12,
xattn_layers: int = 1,
heads: int = 8,
init_scale: float = 0.25,
# Training hparams
inner_batch_size: int = 1,
data_ctx: int = 1,
min_unrolls: int,
max_unrolls: int,
):
super().__init__(
device=device,
param_shapes=param_shapes,
params_proj=params_proj,
latent_bottleneck=latent_bottleneck,
d_latent=d_latent,
)
self.width = width
self.device = device
self.dtype = dtype
self.latent_ctx = latent_ctx
self.inner_batch_size = inner_batch_size
self.data_ctx = data_ctx
self.min_unrolls = min_unrolls
self.max_unrolls = max_unrolls
self.encoder = SimplePerceiver(
device=device,
dtype=dtype,
n_ctx=self.data_ctx + self.latent_ctx,
n_data=self.inner_batch_size,
width=width,
layers=xattn_layers,
heads=heads,
init_scale=init_scale,
)
self.processor = Transformer(
device=device,
dtype=dtype,
n_ctx=self.data_ctx + self.latent_ctx,
layers=layers - xattn_layers,
width=width,
heads=heads,
init_scale=init_scale,
)
self.ln_pre = nn.LayerNorm(width, device=device, dtype=dtype)
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
self.register_parameter(
"output_tokens",
nn.Parameter(torch.randn(self.latent_ctx, width, device=device, dtype=dtype)),
)
self.output_proj = nn.Linear(width, d_latent // self.latent_ctx, device=device, dtype=dtype)
@abstractmethod
def get_h_and_iterator(
self, batch: AttrDict, options: Optional[AttrDict] = None
) -> Tuple[torch.Tensor, Iterable]:
"""
:return: a tuple of (
the initial output tokens of size [batch_size, data_ctx + latent_ctx, width],
an iterator over the given data
)
"""
def encode_to_vector(self, batch: AttrDict, options: Optional[AttrDict] = None) -> torch.Tensor:
h, it = self.get_h_and_iterator(batch, options=options)
n_unrolls = self.get_n_unrolls()
for _ in range(n_unrolls):
data = next(it)
h = self.encoder(h, data)
h = self.processor(h)
h = self.output_proj(self.ln_post(h[:, -self.latent_ctx :]))
return h.flatten(1)
def get_n_unrolls(self):
if self.training:
n_unrolls = torch.randint(
self.min_unrolls, self.max_unrolls + 1, size=(), device=self.device
)
dist.broadcast(n_unrolls, 0)
n_unrolls = n_unrolls.item()
else:
n_unrolls = self.max_unrolls
return n_unrolls
class PointCloudPerceiverEncoder(PerceiverEncoder):
"""
Encode point clouds using a transformer model with an extra output
token used to extract a latent vector.
"""
def __init__(
self,
*,
cross_attention_dataset: str = "pcl",
fps_method: str = "fps",
# point cloud hyperparameters
input_channels: int = 6,
pos_emb: Optional[str] = None,
# multiview hyperparameters
image_size: int = 256,
patch_size: int = 32,
pose_dropout: float = 0.0,
use_depth: bool = False,
max_depth: float = 5.0,
# other hyperparameters
**kwargs,
):
super().__init__(**kwargs)
assert cross_attention_dataset in ("pcl", "multiview")
assert fps_method in ("fps", "first")
self.cross_attention_dataset = cross_attention_dataset
self.fps_method = fps_method
self.input_channels = input_channels
self.input_proj = PosEmbLinear(
pos_emb, input_channels, self.width, device=self.device, dtype=self.dtype
)
if self.cross_attention_dataset == "multiview":
self.image_size = image_size
self.patch_size = patch_size
self.pose_dropout = pose_dropout
self.use_depth = use_depth
self.max_depth = max_depth
pos_ctx = (image_size // patch_size) ** 2
self.register_parameter(
"pos_emb",
nn.Parameter(
torch.randn(
pos_ctx * self.inner_batch_size,
self.width,
device=self.device,
dtype=self.dtype,
)
),
)
self.patch_emb = nn.Conv2d(
in_channels=3 if not use_depth else 4,
out_channels=self.width,
kernel_size=patch_size,
stride=patch_size,
device=self.device,
dtype=self.dtype,
)
self.camera_emb = nn.Sequential(
nn.Linear(
3 * 4 + 1, self.width, device=self.device, dtype=self.dtype
), # input size is for origin+x+y+z+fov
nn.GELU(),
nn.Linear(self.width, 2 * self.width, device=self.device, dtype=self.dtype),
)
def get_h_and_iterator(
self, batch: AttrDict, options: Optional[AttrDict] = None
) -> Tuple[torch.Tensor, Iterable]:
"""
:return: a tuple of (
the initial output tokens of size [batch_size, data_ctx + latent_ctx, width],
an iterator over the given data
)
"""
options = AttrDict() if options is None else options
# Build the initial query embeddings
points = batch.points.permute(0, 2, 1) # NCL -> NLC
fps_samples = self.sample_pcl_fps(points)
batch_size = points.shape[0]
data_tokens = self.input_proj(fps_samples)
latent_tokens = self.output_tokens.unsqueeze(0).repeat(batch_size, 1, 1)
h = self.ln_pre(torch.cat([data_tokens, latent_tokens], dim=1))
assert h.shape == (batch_size, self.data_ctx + self.latent_ctx, self.width)
# Build the dataset embedding iterator
dataset_fn = {
"pcl": self.get_pcl_dataset,
"multiview": self.get_multiview_dataset,
}[self.cross_attention_dataset]
it = dataset_fn(batch, options=options)
return h, it
def sample_pcl_fps(self, points: torch.Tensor) -> torch.Tensor:
return sample_pcl_fps(points, data_ctx=self.data_ctx, method=self.fps_method)
def get_pcl_dataset(
self, batch: AttrDict, options: Optional[AttrDict[str, Any]] = None
) -> Iterable:
_ = options
dataset_emb = self.input_proj(batch.points.permute(0, 2, 1)) # NCL -> NLC
assert dataset_emb.shape[1] >= self.inner_batch_size
return iter(DatasetIterator(dataset_emb, batch_size=self.inner_batch_size))
def get_multiview_dataset(
self, batch: AttrDict, options: Optional[AttrDict] = None
) -> Iterable:
_ = options
dataset_emb = self.encode_views(batch)
batch_size, num_views, n_patches, width = dataset_emb.shape
assert num_views >= self.inner_batch_size
it = iter(DatasetIterator(dataset_emb, batch_size=self.inner_batch_size))
def gen():
while True:
examples = next(it)
assert examples.shape == (batch_size, self.inner_batch_size, n_patches, self.width)
views = examples.reshape(batch_size, -1, width) + self.pos_emb
yield views
return gen()
def encode_views(self, batch: AttrDict) -> torch.Tensor:
"""
:return: [batch_size, num_views, n_patches, width]
"""
all_views = self.views_to_tensor(batch.views).to(self.device)
if self.use_depth:
all_views = torch.cat([all_views, self.depths_to_tensor(batch.depths)], dim=2)
all_cameras = self.cameras_to_tensor(batch.cameras).to(self.device)
batch_size, num_views, _, _, _ = all_views.shape
views_proj = self.patch_emb(
all_views.reshape([batch_size * num_views, *all_views.shape[2:]])
)
views_proj = (
views_proj.reshape([batch_size, num_views, self.width, -1])
.permute(0, 1, 3, 2)
.contiguous()
) # [batch_size x num_views x n_patches x width]
# [batch_size, num_views, 1, 2 * width]
camera_proj = self.camera_emb(all_cameras).reshape(
[batch_size, num_views, 1, self.width * 2]
)
pose_dropout = self.pose_dropout if self.training else 0.0
mask = torch.rand(batch_size, 1, 1, 1, device=views_proj.device) >= pose_dropout
camera_proj = torch.where(mask, camera_proj, torch.zeros_like(camera_proj))
scale, shift = camera_proj.chunk(2, dim=3)
views_proj = views_proj * (scale + 1.0) + shift
return views_proj
def views_to_tensor(self, views: Union[torch.Tensor, List[List[Image.Image]]]) -> torch.Tensor:
"""
Returns a [batch x num_views x 3 x size x size] tensor in the range [-1, 1].
"""
if isinstance(views, torch.Tensor):
return views
tensor_batch = []
num_views = len(views[0])
for inner_list in views:
assert len(inner_list) == num_views
inner_batch = []
for img in inner_list:
img = img.resize((self.image_size,) * 2).convert("RGB")
inner_batch.append(
torch.from_numpy(np.array(img)).to(device=self.device, dtype=torch.float32)
/ 127.5
- 1
)
tensor_batch.append(torch.stack(inner_batch, dim=0))
return torch.stack(tensor_batch, dim=0).permute(0, 1, 4, 2, 3)
def depths_to_tensor(
self, depths: Union[torch.Tensor, List[List[Image.Image]]]
) -> torch.Tensor:
"""
Returns a [batch x num_views x 1 x size x size] tensor in the range [-1, 1].
"""
if isinstance(depths, torch.Tensor):
return depths
tensor_batch = []
num_views = len(depths[0])
for inner_list in depths:
assert len(inner_list) == num_views
inner_batch = []
for arr in inner_list:
tensor = torch.from_numpy(arr).clamp(max=self.max_depth) / self.max_depth
tensor = tensor * 2 - 1
tensor = F.interpolate(
tensor[None, None],
(self.image_size,) * 2,
mode="nearest",
)
inner_batch.append(tensor.to(device=self.device, dtype=torch.float32))
tensor_batch.append(torch.cat(inner_batch, dim=0))
return torch.stack(tensor_batch, dim=0)
def cameras_to_tensor(
self, cameras: Union[torch.Tensor, List[List[ProjectiveCamera]]]
) -> torch.Tensor:
"""
Returns a [batch x num_views x 3*4+1] tensor of camera information.
"""
if isinstance(cameras, torch.Tensor):
return cameras
outer_batch = []
for inner_list in cameras:
inner_batch = []
for camera in inner_list:
inner_batch.append(
np.array(
[
*camera.x,
*camera.y,
*camera.z,
*camera.origin,
camera.x_fov,
]
)
)
outer_batch.append(np.stack(inner_batch, axis=0))
return torch.from_numpy(np.stack(outer_batch, axis=0)).float()
|