File size: 15,280 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
from abc import abstractmethod
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union

import numpy as np
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from torch import torch

from shap_e.models.generation.perceiver import SimplePerceiver
from shap_e.models.generation.transformer import Transformer
from shap_e.models.nn.encoding import PosEmbLinear
from shap_e.rendering.view_data import ProjectiveCamera
from shap_e.util.collections import AttrDict

from .base import VectorEncoder
from .channels_encoder import DatasetIterator, sample_pcl_fps


class PointCloudTransformerEncoder(VectorEncoder):
    """
    Encode point clouds using a transformer model with an extra output
    token used to extract a latent vector.
    """

    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        param_shapes: Dict[str, Tuple[int]],
        params_proj: Dict[str, Any],
        latent_bottleneck: Optional[Dict[str, Any]] = None,
        d_latent: int = 512,
        latent_ctx: int = 1,
        input_channels: int = 6,
        n_ctx: int = 1024,
        width: int = 512,
        layers: int = 12,
        heads: int = 8,
        init_scale: float = 0.25,
        pos_emb: Optional[str] = None,
    ):
        super().__init__(
            device=device,
            param_shapes=param_shapes,
            params_proj=params_proj,
            latent_bottleneck=latent_bottleneck,
            d_latent=d_latent,
        )
        self.input_channels = input_channels
        self.n_ctx = n_ctx
        self.latent_ctx = latent_ctx

        assert d_latent % latent_ctx == 0

        self.ln_pre = nn.LayerNorm(width, device=device, dtype=dtype)
        self.backbone = Transformer(
            device=device,
            dtype=dtype,
            n_ctx=n_ctx + latent_ctx,
            width=width,
            layers=layers,
            heads=heads,
            init_scale=init_scale,
        )
        self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
        self.register_parameter(
            "output_tokens",
            nn.Parameter(torch.randn(latent_ctx, width, device=device, dtype=dtype)),
        )

        self.input_proj = PosEmbLinear(pos_emb, input_channels, width, device=device, dtype=dtype)
        self.output_proj = nn.Linear(width, d_latent // latent_ctx, device=device, dtype=dtype)

    def encode_to_vector(self, batch: AttrDict, options: Optional[AttrDict] = None) -> torch.Tensor:
        _ = options
        points = batch.points.permute(0, 2, 1)  # NCL -> NLC
        h = self.input_proj(points)
        h = torch.cat([h, self.output_tokens[None].repeat(len(h), 1, 1)], dim=1)
        h = self.ln_pre(h)
        h = self.backbone(h)
        h = self.ln_post(h)
        h = h[:, self.n_ctx :]
        h = self.output_proj(h).flatten(1)
        return h


class PerceiverEncoder(VectorEncoder):
    """
    Encode point clouds using a perceiver model with an extra output
    token used to extract a latent vector.
    """

    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        param_shapes: Dict[str, Tuple[int]],
        params_proj: Dict[str, Any],
        latent_bottleneck: Optional[Dict[str, Any]] = None,
        d_latent: int = 512,
        latent_ctx: int = 1,
        width: int = 512,
        layers: int = 12,
        xattn_layers: int = 1,
        heads: int = 8,
        init_scale: float = 0.25,
        # Training hparams
        inner_batch_size: int = 1,
        data_ctx: int = 1,
        min_unrolls: int,
        max_unrolls: int,
    ):
        super().__init__(
            device=device,
            param_shapes=param_shapes,
            params_proj=params_proj,
            latent_bottleneck=latent_bottleneck,
            d_latent=d_latent,
        )
        self.width = width
        self.device = device
        self.dtype = dtype
        self.latent_ctx = latent_ctx

        self.inner_batch_size = inner_batch_size
        self.data_ctx = data_ctx
        self.min_unrolls = min_unrolls
        self.max_unrolls = max_unrolls

        self.encoder = SimplePerceiver(
            device=device,
            dtype=dtype,
            n_ctx=self.data_ctx + self.latent_ctx,
            n_data=self.inner_batch_size,
            width=width,
            layers=xattn_layers,
            heads=heads,
            init_scale=init_scale,
        )
        self.processor = Transformer(
            device=device,
            dtype=dtype,
            n_ctx=self.data_ctx + self.latent_ctx,
            layers=layers - xattn_layers,
            width=width,
            heads=heads,
            init_scale=init_scale,
        )
        self.ln_pre = nn.LayerNorm(width, device=device, dtype=dtype)
        self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
        self.register_parameter(
            "output_tokens",
            nn.Parameter(torch.randn(self.latent_ctx, width, device=device, dtype=dtype)),
        )
        self.output_proj = nn.Linear(width, d_latent // self.latent_ctx, device=device, dtype=dtype)

    @abstractmethod
    def get_h_and_iterator(
        self, batch: AttrDict, options: Optional[AttrDict] = None
    ) -> Tuple[torch.Tensor, Iterable]:
        """
        :return: a tuple of (
            the initial output tokens of size [batch_size, data_ctx + latent_ctx, width],
            an iterator over the given data
        )
        """

    def encode_to_vector(self, batch: AttrDict, options: Optional[AttrDict] = None) -> torch.Tensor:
        h, it = self.get_h_and_iterator(batch, options=options)
        n_unrolls = self.get_n_unrolls()

        for _ in range(n_unrolls):
            data = next(it)
            h = self.encoder(h, data)
            h = self.processor(h)

        h = self.output_proj(self.ln_post(h[:, -self.latent_ctx :]))
        return h.flatten(1)

    def get_n_unrolls(self):
        if self.training:
            n_unrolls = torch.randint(
                self.min_unrolls, self.max_unrolls + 1, size=(), device=self.device
            )
            dist.broadcast(n_unrolls, 0)
            n_unrolls = n_unrolls.item()
        else:
            n_unrolls = self.max_unrolls
        return n_unrolls


class PointCloudPerceiverEncoder(PerceiverEncoder):
    """
    Encode point clouds using a transformer model with an extra output
    token used to extract a latent vector.
    """

    def __init__(
        self,
        *,
        cross_attention_dataset: str = "pcl",
        fps_method: str = "fps",
        # point cloud hyperparameters
        input_channels: int = 6,
        pos_emb: Optional[str] = None,
        # multiview hyperparameters
        image_size: int = 256,
        patch_size: int = 32,
        pose_dropout: float = 0.0,
        use_depth: bool = False,
        max_depth: float = 5.0,
        # other hyperparameters
        **kwargs,
    ):
        super().__init__(**kwargs)
        assert cross_attention_dataset in ("pcl", "multiview")
        assert fps_method in ("fps", "first")
        self.cross_attention_dataset = cross_attention_dataset
        self.fps_method = fps_method
        self.input_channels = input_channels
        self.input_proj = PosEmbLinear(
            pos_emb, input_channels, self.width, device=self.device, dtype=self.dtype
        )
        if self.cross_attention_dataset == "multiview":
            self.image_size = image_size
            self.patch_size = patch_size
            self.pose_dropout = pose_dropout
            self.use_depth = use_depth
            self.max_depth = max_depth
            pos_ctx = (image_size // patch_size) ** 2
            self.register_parameter(
                "pos_emb",
                nn.Parameter(
                    torch.randn(
                        pos_ctx * self.inner_batch_size,
                        self.width,
                        device=self.device,
                        dtype=self.dtype,
                    )
                ),
            )
            self.patch_emb = nn.Conv2d(
                in_channels=3 if not use_depth else 4,
                out_channels=self.width,
                kernel_size=patch_size,
                stride=patch_size,
                device=self.device,
                dtype=self.dtype,
            )
            self.camera_emb = nn.Sequential(
                nn.Linear(
                    3 * 4 + 1, self.width, device=self.device, dtype=self.dtype
                ),  # input size is for origin+x+y+z+fov
                nn.GELU(),
                nn.Linear(self.width, 2 * self.width, device=self.device, dtype=self.dtype),
            )

    def get_h_and_iterator(
        self, batch: AttrDict, options: Optional[AttrDict] = None
    ) -> Tuple[torch.Tensor, Iterable]:
        """
        :return: a tuple of (
            the initial output tokens of size [batch_size, data_ctx + latent_ctx, width],
            an iterator over the given data
        )
        """
        options = AttrDict() if options is None else options

        # Build the initial query embeddings
        points = batch.points.permute(0, 2, 1)  # NCL -> NLC
        fps_samples = self.sample_pcl_fps(points)
        batch_size = points.shape[0]
        data_tokens = self.input_proj(fps_samples)
        latent_tokens = self.output_tokens.unsqueeze(0).repeat(batch_size, 1, 1)
        h = self.ln_pre(torch.cat([data_tokens, latent_tokens], dim=1))
        assert h.shape == (batch_size, self.data_ctx + self.latent_ctx, self.width)

        # Build the dataset embedding iterator
        dataset_fn = {
            "pcl": self.get_pcl_dataset,
            "multiview": self.get_multiview_dataset,
        }[self.cross_attention_dataset]
        it = dataset_fn(batch, options=options)

        return h, it

    def sample_pcl_fps(self, points: torch.Tensor) -> torch.Tensor:
        return sample_pcl_fps(points, data_ctx=self.data_ctx, method=self.fps_method)

    def get_pcl_dataset(
        self, batch: AttrDict, options: Optional[AttrDict[str, Any]] = None
    ) -> Iterable:
        _ = options
        dataset_emb = self.input_proj(batch.points.permute(0, 2, 1))  # NCL -> NLC
        assert dataset_emb.shape[1] >= self.inner_batch_size
        return iter(DatasetIterator(dataset_emb, batch_size=self.inner_batch_size))

    def get_multiview_dataset(
        self, batch: AttrDict, options: Optional[AttrDict] = None
    ) -> Iterable:
        _ = options

        dataset_emb = self.encode_views(batch)
        batch_size, num_views, n_patches, width = dataset_emb.shape

        assert num_views >= self.inner_batch_size

        it = iter(DatasetIterator(dataset_emb, batch_size=self.inner_batch_size))

        def gen():
            while True:
                examples = next(it)
                assert examples.shape == (batch_size, self.inner_batch_size, n_patches, self.width)
                views = examples.reshape(batch_size, -1, width) + self.pos_emb
                yield views

        return gen()

    def encode_views(self, batch: AttrDict) -> torch.Tensor:
        """
        :return: [batch_size, num_views, n_patches, width]
        """
        all_views = self.views_to_tensor(batch.views).to(self.device)
        if self.use_depth:
            all_views = torch.cat([all_views, self.depths_to_tensor(batch.depths)], dim=2)
        all_cameras = self.cameras_to_tensor(batch.cameras).to(self.device)

        batch_size, num_views, _, _, _ = all_views.shape

        views_proj = self.patch_emb(
            all_views.reshape([batch_size * num_views, *all_views.shape[2:]])
        )
        views_proj = (
            views_proj.reshape([batch_size, num_views, self.width, -1])
            .permute(0, 1, 3, 2)
            .contiguous()
        )  # [batch_size x num_views x n_patches x width]

        # [batch_size, num_views, 1, 2 * width]
        camera_proj = self.camera_emb(all_cameras).reshape(
            [batch_size, num_views, 1, self.width * 2]
        )
        pose_dropout = self.pose_dropout if self.training else 0.0
        mask = torch.rand(batch_size, 1, 1, 1, device=views_proj.device) >= pose_dropout
        camera_proj = torch.where(mask, camera_proj, torch.zeros_like(camera_proj))
        scale, shift = camera_proj.chunk(2, dim=3)
        views_proj = views_proj * (scale + 1.0) + shift
        return views_proj

    def views_to_tensor(self, views: Union[torch.Tensor, List[List[Image.Image]]]) -> torch.Tensor:
        """
        Returns a [batch x num_views x 3 x size x size] tensor in the range [-1, 1].
        """
        if isinstance(views, torch.Tensor):
            return views

        tensor_batch = []
        num_views = len(views[0])
        for inner_list in views:
            assert len(inner_list) == num_views
            inner_batch = []
            for img in inner_list:
                img = img.resize((self.image_size,) * 2).convert("RGB")
                inner_batch.append(
                    torch.from_numpy(np.array(img)).to(device=self.device, dtype=torch.float32)
                    / 127.5
                    - 1
                )
            tensor_batch.append(torch.stack(inner_batch, dim=0))
        return torch.stack(tensor_batch, dim=0).permute(0, 1, 4, 2, 3)

    def depths_to_tensor(
        self, depths: Union[torch.Tensor, List[List[Image.Image]]]
    ) -> torch.Tensor:
        """
        Returns a [batch x num_views x 1 x size x size] tensor in the range [-1, 1].
        """
        if isinstance(depths, torch.Tensor):
            return depths

        tensor_batch = []
        num_views = len(depths[0])
        for inner_list in depths:
            assert len(inner_list) == num_views
            inner_batch = []
            for arr in inner_list:
                tensor = torch.from_numpy(arr).clamp(max=self.max_depth) / self.max_depth
                tensor = tensor * 2 - 1
                tensor = F.interpolate(
                    tensor[None, None],
                    (self.image_size,) * 2,
                    mode="nearest",
                )
                inner_batch.append(tensor.to(device=self.device, dtype=torch.float32))
            tensor_batch.append(torch.cat(inner_batch, dim=0))
        return torch.stack(tensor_batch, dim=0)

    def cameras_to_tensor(
        self, cameras: Union[torch.Tensor, List[List[ProjectiveCamera]]]
    ) -> torch.Tensor:
        """
        Returns a [batch x num_views x 3*4+1] tensor of camera information.
        """
        if isinstance(cameras, torch.Tensor):
            return cameras
        outer_batch = []
        for inner_list in cameras:
            inner_batch = []
            for camera in inner_list:
                inner_batch.append(
                    np.array(
                        [
                            *camera.x,
                            *camera.y,
                            *camera.z,
                            *camera.origin,
                            camera.x_fov,
                        ]
                    )
                )
            outer_batch.append(np.stack(inner_batch, axis=0))
        return torch.from_numpy(np.stack(outer_batch, axis=0)).float()