File size: 6,916 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from abc import ABC, abstractmethod
from typing import Any, Dict, Optional, Tuple

import torch.nn as nn
from torch import torch

from shap_e.models.renderer import Renderer
from shap_e.util.collections import AttrDict

from .bottleneck import latent_bottleneck_from_config, latent_warp_from_config
from .params_proj import flatten_param_shapes, params_proj_from_config


class Encoder(nn.Module, ABC):
    def __init__(self, *, device: torch.device, param_shapes: Dict[str, Tuple[int]]):
        """
        Instantiate the encoder with information about the renderer's input
        parameters. This information can be used to create output layers to
        generate the necessary latents.
        """
        super().__init__()
        self.param_shapes = param_shapes
        self.device = device

    @abstractmethod
    def forward(self, batch: AttrDict, options: Optional[AttrDict] = None) -> AttrDict:
        """
        Encode a batch of data into a batch of latent information.
        """


class VectorEncoder(Encoder):
    def __init__(
        self,
        *,
        device: torch.device,
        param_shapes: Dict[str, Tuple[int]],
        params_proj: Dict[str, Any],
        d_latent: int,
        latent_bottleneck: Optional[Dict[str, Any]] = None,
        latent_warp: Optional[Dict[str, Any]] = None,
    ):
        super().__init__(device=device, param_shapes=param_shapes)
        if latent_bottleneck is None:
            latent_bottleneck = dict(name="identity")
        if latent_warp is None:
            latent_warp = dict(name="identity")
        self.d_latent = d_latent
        self.params_proj = params_proj_from_config(
            params_proj, device=device, param_shapes=param_shapes, d_latent=d_latent
        )
        self.latent_bottleneck = latent_bottleneck_from_config(
            latent_bottleneck, device=device, d_latent=d_latent
        )
        self.latent_warp = latent_warp_from_config(latent_warp, device=device)

    def forward(self, batch: AttrDict, options: Optional[AttrDict] = None) -> AttrDict:
        h = self.encode_to_bottleneck(batch, options=options)
        return self.bottleneck_to_params(h, options=options)

    def encode_to_bottleneck(
        self, batch: AttrDict, options: Optional[AttrDict] = None
    ) -> torch.Tensor:
        return self.latent_warp.warp(
            self.latent_bottleneck(self.encode_to_vector(batch, options=options), options=options),
            options=options,
        )

    @abstractmethod
    def encode_to_vector(self, batch: AttrDict, options: Optional[AttrDict] = None) -> torch.Tensor:
        """
        Encode the batch into a single latent vector.
        """

    def bottleneck_to_params(
        self, vector: torch.Tensor, options: Optional[AttrDict] = None
    ) -> AttrDict:
        _ = options
        return self.params_proj(self.latent_warp.unwarp(vector, options=options), options=options)


class ChannelsEncoder(VectorEncoder):
    def __init__(
        self,
        *,
        device: torch.device,
        param_shapes: Dict[str, Tuple[int]],
        params_proj: Dict[str, Any],
        d_latent: int,
        latent_bottleneck: Optional[Dict[str, Any]] = None,
        latent_warp: Optional[Dict[str, Any]] = None,
    ):
        super().__init__(
            device=device,
            param_shapes=param_shapes,
            params_proj=params_proj,
            d_latent=d_latent,
            latent_bottleneck=latent_bottleneck,
            latent_warp=latent_warp,
        )
        self.flat_shapes = flatten_param_shapes(param_shapes)
        self.latent_ctx = sum(flat[0] for flat in self.flat_shapes.values())

    @abstractmethod
    def encode_to_channels(
        self, batch: AttrDict, options: Optional[AttrDict] = None
    ) -> torch.Tensor:
        """
        Encode the batch into a per-data-point set of latents.
        :return: [batch_size, latent_ctx, latent_width]
        """

    def encode_to_vector(self, batch: AttrDict, options: Optional[AttrDict] = None) -> torch.Tensor:
        return self.encode_to_channels(batch, options=options).flatten(1)

    def bottleneck_to_channels(
        self, vector: torch.Tensor, options: Optional[AttrDict] = None
    ) -> torch.Tensor:
        _ = options
        return vector.view(vector.shape[0], self.latent_ctx, -1)

    def bottleneck_to_params(
        self, vector: torch.Tensor, options: Optional[AttrDict] = None
    ) -> AttrDict:
        _ = options
        # if vector.requires_grad:
            # vector.register_hook(lambda grad: print("latent grad", grad.min(), grad.max()))
        return self.params_proj(
            self.bottleneck_to_channels(self.latent_warp.unwarp(vector)), options=options
        )


class Transmitter(nn.Module):
    def __init__(self, encoder: Encoder, renderer: Renderer):
        super().__init__()
        self.encoder = encoder
        self.renderer = renderer

    def forward(self, batch: AttrDict, options: Optional[AttrDict] = None) -> AttrDict:
        """
        Transmit the batch through the encoder and then the renderer.
        """
        params = self.encoder(batch, options=options)
        return self.renderer(batch, params=params, options=options)


class VectorDecoder(nn.Module):
    def __init__(
        self,
        *,
        device: torch.device,
        param_shapes: Dict[str, Tuple[int]],
        params_proj: Dict[str, Any],
        d_latent: int,
        latent_warp: Optional[Dict[str, Any]] = None,
        renderer: Renderer,
    ):
        super().__init__()
        self.device = device
        self.param_shapes = param_shapes

        if latent_warp is None:
            latent_warp = dict(name="identity")
        self.d_latent = d_latent
        self.params_proj = params_proj_from_config(
            params_proj, device=device, param_shapes=param_shapes, d_latent=d_latent
        )
        self.latent_warp = latent_warp_from_config(latent_warp, device=device)
        self.renderer = renderer

    def bottleneck_to_params(
        self, vector: torch.Tensor, options: Optional[AttrDict] = None
    ) -> AttrDict:
        _ = options
        return self.params_proj(self.latent_warp.unwarp(vector, options=options), options=options)


class ChannelsDecoder(VectorDecoder):
    def __init__(
        self,
        *,
        latent_ctx: int,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.latent_ctx = latent_ctx

    def bottleneck_to_channels(
        self, vector: torch.Tensor, options: Optional[AttrDict] = None
    ) -> torch.Tensor:
        _ = options
        return vector.view(vector.shape[0], self.latent_ctx, -1)

    def bottleneck_to_params(
        self, vector: torch.Tensor, options: Optional[AttrDict] = None
    ) -> AttrDict:
        _ = options
        return self.params_proj(
            self.bottleneck_to_channels(self.latent_warp.unwarp(vector)), options=options
        )