Spaces:
Runtime error
Runtime error
File size: 18,620 Bytes
19c4ddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
import warnings
from abc import ABC, abstractmethod
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from shap_e.models.nn.camera import DifferentiableCamera, DifferentiableProjectiveCamera
from shap_e.models.nn.meta import subdict
from shap_e.models.nn.utils import to_torch
from shap_e.models.query import Query
from shap_e.models.renderer import Renderer, get_camera_from_batch
from shap_e.models.volume import BoundingBoxVolume, Volume
from shap_e.rendering.blender.constants import BASIC_AMBIENT_COLOR, BASIC_DIFFUSE_COLOR
from shap_e.rendering.mc import marching_cubes
from shap_e.rendering.torch_mesh import TorchMesh
from shap_e.rendering.view_data import ProjectiveCamera
from shap_e.util.collections import AttrDict
from .base import Model
class STFRendererBase(ABC):
@abstractmethod
def get_signed_distance(
self,
position: torch.Tensor,
params: Dict[str, torch.Tensor],
options: AttrDict[str, Any],
) -> torch.Tensor:
pass
@abstractmethod
def get_texture(
self,
position: torch.Tensor,
params: Dict[str, torch.Tensor],
options: AttrDict[str, Any],
) -> torch.Tensor:
pass
class STFRenderer(Renderer, STFRendererBase):
def __init__(
self,
sdf: Model,
tf: Model,
volume: Volume,
grid_size: int,
texture_channels: Sequence[str] = ("R", "G", "B"),
channel_scale: Sequence[float] = (255.0, 255.0, 255.0),
ambient_color: Union[float, Tuple[float]] = BASIC_AMBIENT_COLOR,
diffuse_color: Union[float, Tuple[float]] = BASIC_DIFFUSE_COLOR,
specular_color: Union[float, Tuple[float]] = 0.0,
output_srgb: bool = True,
device: torch.device = torch.device("cuda"),
**kwargs,
):
super().__init__(**kwargs)
assert isinstance(volume, BoundingBoxVolume), "cannot sample points in unknown volume"
self.sdf = sdf
self.tf = tf
self.volume = volume
self.grid_size = grid_size
self.texture_channels = texture_channels
self.channel_scale = to_torch(channel_scale).to(device)
self.ambient_color = ambient_color
self.diffuse_color = diffuse_color
self.specular_color = specular_color
self.output_srgb = output_srgb
self.device = device
self.to(device)
def render_views(
self,
batch: Dict,
params: Optional[Dict] = None,
options: Optional[Dict] = None,
) -> AttrDict:
params = self.update(params)
options = AttrDict() if not options else AttrDict(options)
sdf_fn = partial(self.sdf.forward_batched, params=subdict(params, "sdf"))
tf_fn = partial(self.tf.forward_batched, params=subdict(params, "tf"))
nerstf_fn = None
return render_views_from_stf(
batch,
options,
sdf_fn=sdf_fn,
tf_fn=tf_fn,
nerstf_fn=nerstf_fn,
volume=self.volume,
grid_size=self.grid_size,
channel_scale=self.channel_scale,
texture_channels=self.texture_channels,
ambient_color=self.ambient_color,
diffuse_color=self.diffuse_color,
specular_color=self.specular_color,
output_srgb=self.output_srgb,
device=self.device,
)
def get_signed_distance(
self,
query: Query,
params: Dict[str, torch.Tensor],
options: AttrDict[str, Any],
) -> torch.Tensor:
return self.sdf(
query,
params=subdict(params, "sdf"),
options=options,
).signed_distance
def get_texture(
self,
query: Query,
params: Dict[str, torch.Tensor],
options: AttrDict[str, Any],
) -> torch.Tensor:
return self.tf(
query,
params=subdict(params, "tf"),
options=options,
).channels
def render_views_from_stf(
batch: Dict,
options: AttrDict[str, Any],
*,
sdf_fn: Optional[Callable],
tf_fn: Optional[Callable],
nerstf_fn: Optional[Callable],
volume: BoundingBoxVolume,
grid_size: int,
channel_scale: torch.Tensor,
texture_channels: Sequence[str] = ("R", "G", "B"),
ambient_color: Union[float, Tuple[float]] = 0.0,
diffuse_color: Union[float, Tuple[float]] = 1.0,
specular_color: Union[float, Tuple[float]] = 0.2,
output_srgb: bool = False,
device: torch.device = torch.device("cuda"),
) -> AttrDict:
"""
:param batch: contains either ["poses", "camera"], or ["cameras"]. Can
optionally contain any of ["height", "width", "query_batch_size"]
:param options: controls checkpointing, caching, and rendering
:param sdf_fn: returns [batch_size, query_batch_size, n_output] where
n_output >= 1.
:param tf_fn: returns [batch_size, query_batch_size, n_channels]
:param volume: AABB volume
:param grid_size: SDF sampling resolution
:param texture_channels: what texture to predict
:param channel_scale: how each channel is scaled
:return: at least
channels: [batch_size, len(cameras), height, width, 3]
transmittance: [batch_size, len(cameras), height, width, 1]
aux_losses: AttrDict[str, torch.Tensor]
"""
camera, batch_size, inner_shape = get_camera_from_batch(batch)
inner_batch_size = int(np.prod(inner_shape))
assert camera.width == camera.height, "only square views are supported"
assert camera.x_fov == camera.y_fov, "only square views are supported"
assert isinstance(camera, DifferentiableProjectiveCamera)
device = camera.origin.device
device_type = device.type
TO_CACHE = ["fields", "raw_meshes", "raw_signed_distance", "raw_density", "mesh_mask", "meshes"]
if options.cache is not None and all(key in options.cache for key in TO_CACHE):
fields = options.cache.fields
raw_meshes = options.cache.raw_meshes
raw_signed_distance = options.cache.raw_signed_distance
raw_density = options.cache.raw_density
mesh_mask = options.cache.mesh_mask
else:
query_batch_size = batch.get("query_batch_size", batch.get("ray_batch_size", 4096))
query_points = volume_query_points(volume, grid_size)
fn = nerstf_fn if sdf_fn is None else sdf_fn
sdf_out = fn(
query=Query(position=query_points[None].repeat(batch_size, 1, 1)),
query_batch_size=query_batch_size,
options=options,
)
raw_signed_distance = sdf_out.signed_distance
raw_density = None
if "density" in sdf_out:
raw_density = sdf_out.density
with torch.autocast(device_type, enabled=False):
fields = sdf_out.signed_distance.float()
raw_signed_distance = sdf_out.signed_distance
assert (
len(fields.shape) == 3 and fields.shape[-1] == 1
), f"expected [meta_batch x inner_batch] SDF results, but got {fields.shape}"
fields = fields.reshape(batch_size, *([grid_size] * 3))
# Force a negative border around the SDFs to close off all the models.
full_grid = torch.zeros(
batch_size,
grid_size + 2,
grid_size + 2,
grid_size + 2,
device=fields.device,
dtype=fields.dtype,
)
full_grid.fill_(-1.0)
full_grid[:, 1:-1, 1:-1, 1:-1] = fields
fields = full_grid
raw_meshes = []
mesh_mask = []
for field in fields:
raw_mesh = marching_cubes(field, volume.bbox_min, volume.bbox_max - volume.bbox_min)
if len(raw_mesh.faces) == 0:
# DDP deadlocks when there are unused parameters on some ranks
# and not others, so we make sure the field is a dependency in
# the graph regardless of empty meshes.
vertex_dependency = field.mean()
raw_mesh = TorchMesh(
verts=torch.zeros(3, 3, device=device) + vertex_dependency,
faces=torch.tensor([[0, 1, 2]], dtype=torch.long, device=device),
)
# Make sure we only feed back zero gradients to the field
# by masking out the final renderings of this mesh.
mesh_mask.append(False)
else:
mesh_mask.append(True)
raw_meshes.append(raw_mesh)
mesh_mask = torch.tensor(mesh_mask, device=device)
max_vertices = max(len(m.verts) for m in raw_meshes)
fn = nerstf_fn if tf_fn is None else tf_fn
tf_out = fn(
query=Query(
position=torch.stack(
[m.verts[torch.arange(0, max_vertices) % len(m.verts)] for m in raw_meshes],
dim=0,
)
),
query_batch_size=query_batch_size,
options=options,
)
if "cache" in options:
options.cache.fields = fields
options.cache.raw_meshes = raw_meshes
options.cache.raw_signed_distance = raw_signed_distance
options.cache.raw_density = raw_density
options.cache.mesh_mask = mesh_mask
if output_srgb:
tf_out.channels = _convert_srgb_to_linear(tf_out.channels)
# Make sure the raw meshes have colors.
with torch.autocast(device_type, enabled=False):
textures = tf_out.channels.float()
assert len(textures.shape) == 3 and textures.shape[-1] == len(
texture_channels
), f"expected [meta_batch x inner_batch x texture_channels] field results, but got {textures.shape}"
for m, texture in zip(raw_meshes, textures):
texture = texture[: len(m.verts)]
m.vertex_channels = {name: ch for name, ch in zip(texture_channels, texture.unbind(-1))}
args = dict(
options=options,
texture_channels=texture_channels,
ambient_color=ambient_color,
diffuse_color=diffuse_color,
specular_color=specular_color,
camera=camera,
batch_size=batch_size,
inner_batch_size=inner_batch_size,
inner_shape=inner_shape,
raw_meshes=raw_meshes,
tf_out=tf_out,
)
try:
out = _render_with_pytorch3d(**args)
except ModuleNotFoundError as exc:
warnings.warn(f"exception rendering with PyTorch3D: {exc}")
warnings.warn(
"falling back on native PyTorch renderer, which does not support full gradients"
)
out = _render_with_raycast(**args)
# Apply mask to prevent gradients for empty meshes.
reshaped_mask = mesh_mask.view([-1] + [1] * (len(out.channels.shape) - 1))
out.channels = torch.where(reshaped_mask, out.channels, torch.zeros_like(out.channels))
out.transmittance = torch.where(
reshaped_mask, out.transmittance, torch.ones_like(out.transmittance)
)
if output_srgb:
out.channels = _convert_linear_to_srgb(out.channels)
out.channels = out.channels * (1 - out.transmittance) * channel_scale.view(-1)
# This might be useful information to have downstream
out.raw_meshes = raw_meshes
out.fields = fields
out.mesh_mask = mesh_mask
out.raw_signed_distance = raw_signed_distance
out.aux_losses = AttrDict(cross_entropy=cross_entropy_sdf_loss(fields))
if raw_density is not None:
out.raw_density = raw_density
return out
def _render_with_pytorch3d(
options: AttrDict,
texture_channels: Sequence[str],
ambient_color: Union[float, Tuple[float]],
diffuse_color: Union[float, Tuple[float]],
specular_color: Union[float, Tuple[float]],
camera: DifferentiableCamera,
batch_size: int,
inner_shape: Sequence[int],
inner_batch_size: int,
raw_meshes: List[TorchMesh],
tf_out: AttrDict,
):
_ = tf_out
# Lazy import because pytorch3d is installed lazily.
from shap_e.rendering.pytorch3d_util import (
blender_uniform_lights,
convert_cameras_torch,
convert_meshes,
render_images,
)
n_channels = len(texture_channels)
device = camera.origin.device
device_type = device.type
with torch.autocast(device_type, enabled=False):
meshes = convert_meshes(raw_meshes)
lights = blender_uniform_lights(
batch_size,
device,
ambient_color=ambient_color,
diffuse_color=diffuse_color,
specular_color=specular_color,
)
# Separate camera intrinsics for each view, so that we can
# create a new camera for each batch of views.
cam_shape = [batch_size, inner_batch_size, -1]
position = camera.origin.reshape(cam_shape)
x = camera.x.reshape(cam_shape)
y = camera.y.reshape(cam_shape)
z = camera.z.reshape(cam_shape)
results = []
for i in range(inner_batch_size):
sub_cams = convert_cameras_torch(
position[:, i], x[:, i], y[:, i], z[:, i], fov=camera.x_fov
)
imgs = render_images(
camera.width,
meshes,
sub_cams,
lights,
use_checkpoint=options.checkpoint_render,
**options.get("render_options", {}),
)
results.append(imgs)
views = torch.stack(results, dim=1)
views = views.view(batch_size, *inner_shape, camera.height, camera.width, n_channels + 1)
out = AttrDict(
channels=views[..., :-1], # [batch_size, *inner_shape, height, width, n_channels]
transmittance=1 - views[..., -1:], # [batch_size, *inner_shape, height, width, 1]
meshes=meshes,
)
return out
def _render_with_raycast(
options: AttrDict,
texture_channels: Sequence[str],
ambient_color: Union[float, Tuple[float]],
diffuse_color: Union[float, Tuple[float]],
specular_color: Union[float, Tuple[float]],
camera: DifferentiableCamera,
batch_size: int,
inner_shape: Sequence[int],
inner_batch_size: int,
raw_meshes: List[TorchMesh],
tf_out: AttrDict,
):
assert np.mean(np.array(specular_color)) == 0
from shap_e.rendering.raycast.render import render_diffuse_mesh
from shap_e.rendering.raycast.types import TriMesh as TorchTriMesh
device = camera.origin.device
device_type = device.type
cam_shape = [batch_size, inner_batch_size, -1]
origin = camera.origin.reshape(cam_shape)
x = camera.x.reshape(cam_shape)
y = camera.y.reshape(cam_shape)
z = camera.z.reshape(cam_shape)
with torch.autocast(device_type, enabled=False):
all_meshes = []
for i, mesh in enumerate(raw_meshes):
all_meshes.append(
TorchTriMesh(
faces=mesh.faces.long(),
vertices=mesh.verts.float(),
vertex_colors=tf_out.channels[i, : len(mesh.verts)].float(),
)
)
all_images = []
for i, mesh in enumerate(all_meshes):
for j in range(inner_batch_size):
all_images.append(
render_diffuse_mesh(
camera=ProjectiveCamera(
origin=origin[i, j].detach().cpu().numpy(),
x=x[i, j].detach().cpu().numpy(),
y=y[i, j].detach().cpu().numpy(),
z=z[i, j].detach().cpu().numpy(),
width=camera.width,
height=camera.height,
x_fov=camera.x_fov,
y_fov=camera.y_fov,
),
mesh=mesh,
diffuse=float(np.array(diffuse_color).mean()),
ambient=float(np.array(ambient_color).mean()),
ray_batch_size=16, # low memory usage
checkpoint=options.checkpoint_render,
)
)
n_channels = len(texture_channels)
views = torch.stack(all_images).view(
batch_size, *inner_shape, camera.height, camera.width, n_channels + 1
)
return AttrDict(
channels=views[..., :-1], # [batch_size, *inner_shape, height, width, n_channels]
transmittance=1 - views[..., -1:], # [batch_size, *inner_shape, height, width, 1]
meshes=all_meshes,
)
def _convert_srgb_to_linear(u: torch.Tensor) -> torch.Tensor:
return torch.where(u <= 0.04045, u / 12.92, ((u + 0.055) / 1.055) ** 2.4)
def _convert_linear_to_srgb(u: torch.Tensor) -> torch.Tensor:
return torch.where(u <= 0.0031308, 12.92 * u, 1.055 * (u ** (1 / 2.4)) - 0.055)
def cross_entropy_sdf_loss(fields: torch.Tensor):
logits = F.logsigmoid(fields)
signs = (fields > 0).float()
losses = []
for dim in range(1, 4):
n = logits.shape[dim]
for (t_start, t_end, p_start, p_end) in [(0, -1, 1, n), (1, n, 0, -1)]:
targets = slice_fields(signs, dim, t_start, t_end)
preds = slice_fields(logits, dim, p_start, p_end)
losses.append(
F.binary_cross_entropy_with_logits(preds, targets, reduction="none")
.flatten(1)
.mean()
)
return torch.stack(losses, dim=-1).sum()
def slice_fields(fields: torch.Tensor, dim: int, start: int, end: int):
if dim == 1:
return fields[:, start:end]
elif dim == 2:
return fields[:, :, start:end]
elif dim == 3:
return fields[:, :, :, start:end]
else:
raise ValueError(f"cannot slice dimension {dim}")
def volume_query_points(
volume: Volume,
grid_size: int,
):
assert isinstance(volume, BoundingBoxVolume)
indices = torch.arange(grid_size**3, device=volume.bbox_min.device)
zs = indices % grid_size
ys = torch.div(indices, grid_size, rounding_mode="trunc") % grid_size
xs = torch.div(indices, grid_size**2, rounding_mode="trunc") % grid_size
combined = torch.stack([xs, ys, zs], dim=1)
return (combined.float() / (grid_size - 1)) * (
volume.bbox_max - volume.bbox_min
) + volume.bbox_min
|