File size: 10,404 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from functools import partial
from typing import Any, Dict, Optional, Sequence, Tuple, Union

import torch

from shap_e.models.nerf.model import NeRFModel
from shap_e.models.nerf.ray import RayVolumeIntegral, StratifiedRaySampler, render_rays
from shap_e.models.nn.meta import subdict
from shap_e.models.nn.utils import to_torch
from shap_e.models.query import Query
from shap_e.models.renderer import RayRenderer, render_views_from_rays
from shap_e.models.stf.base import Model
from shap_e.models.stf.renderer import STFRendererBase, render_views_from_stf
from shap_e.models.volume import BoundingBoxVolume, Volume
from shap_e.rendering.blender.constants import BASIC_AMBIENT_COLOR, BASIC_DIFFUSE_COLOR
from shap_e.util.collections import AttrDict


class NeRSTFRenderer(RayRenderer, STFRendererBase):
    def __init__(
        self,
        sdf: Optional[Model],
        tf: Optional[Model],
        nerstf: Optional[Model],
        void: NeRFModel,
        volume: Volume,
        grid_size: int,
        n_coarse_samples: int,
        n_fine_samples: int,
        importance_sampling_options: Optional[Dict[str, Any]] = None,
        separate_shared_samples: bool = False,
        texture_channels: Sequence[str] = ("R", "G", "B"),
        channel_scale: Sequence[float] = (255.0, 255.0, 255.0),
        ambient_color: Union[float, Tuple[float]] = BASIC_AMBIENT_COLOR,
        diffuse_color: Union[float, Tuple[float]] = BASIC_DIFFUSE_COLOR,
        specular_color: Union[float, Tuple[float]] = 0.0,
        output_srgb: bool = True,
        device: torch.device = torch.device("cuda"),
        **kwargs,
    ):
        super().__init__(**kwargs)
        assert isinstance(volume, BoundingBoxVolume), "cannot sample points in unknown volume"
        assert (nerstf is not None) ^ (sdf is not None and tf is not None)
        self.sdf = sdf
        self.tf = tf
        self.nerstf = nerstf
        self.void = void
        self.volume = volume
        self.grid_size = grid_size
        self.n_coarse_samples = n_coarse_samples
        self.n_fine_samples = n_fine_samples
        self.importance_sampling_options = AttrDict(importance_sampling_options or {})
        self.separate_shared_samples = separate_shared_samples
        self.texture_channels = texture_channels
        self.channel_scale = to_torch(channel_scale).to(device)
        self.ambient_color = ambient_color
        self.diffuse_color = diffuse_color
        self.specular_color = specular_color
        self.output_srgb = output_srgb
        self.device = device
        self.patch_size=128
        self.use_patch=False
        self.to(device)

    def _query(
        self,
        query: Query,
        params: AttrDict[str, torch.Tensor],
        options: AttrDict[str, Any],
    ) -> AttrDict:
        no_dir_query = query.copy()
        no_dir_query.direction = None

        if options.get("rendering_mode", "stf") == "stf":
            assert query.direction is None

        if self.nerstf is not None:
            sdf = tf = self.nerstf(
                query,
                params=subdict(params, "nerstf"),
                options=options,
            )
        else:
            sdf = self.sdf(no_dir_query, params=subdict(params, "sdf"), options=options)
            tf = self.tf(query, params=subdict(params, "tf"), options=options)

        return AttrDict(
            density=sdf.density,
            signed_distance=sdf.signed_distance,
            channels=tf.channels,
            aux_losses=dict(),
        )

    def render_rays(
        self,
        batch: AttrDict,
        params: Optional[Dict] = None,
        options: Optional[AttrDict] = None,
    ) -> AttrDict:
        """
        :param batch: has

            - rays: [batch_size x ... x 2 x 3] specify the origin and direction of each ray.
        :param options: Optional[Dict]
        """
        params = self.update(params)
        options = AttrDict() if options is None else AttrDict(options)

        # Necessary to tell the TF to use specific NeRF channels.
        options.rendering_mode = "nerf"

        model = partial(self._query, params=params, options=options)

        # First, render rays with coarse, stratified samples.
        options.nerf_level = "coarse"
        parts = [
            RayVolumeIntegral(
                model=model,
                volume=self.volume,
                sampler=StratifiedRaySampler(),
                n_samples=self.n_coarse_samples,
            ),
        ]
        coarse_results, samplers, coarse_raw_outputs = render_rays(
            batch.rays,
            parts,
            self.void,
            shared=not self.separate_shared_samples,
            render_with_direction=options.render_with_direction,
            importance_sampling_options=self.importance_sampling_options,
        )

        # Then, render with additional importance-weighted ray samples.
        options.nerf_level = "fine"
        parts = [
            RayVolumeIntegral(
                model=model,
                volume=self.volume,
                sampler=samplers[0],
                n_samples=self.n_fine_samples,
            ),
        ]
        fine_results, _, raw_outputs = render_rays(
            batch.rays,
            parts,
            self.void,
            shared=not self.separate_shared_samples,
            prev_raw_outputs=coarse_raw_outputs,
            render_with_direction=options.render_with_direction,
        )
        raw = raw_outputs[0]

        aux_losses = fine_results.output.aux_losses.copy()
        if self.separate_shared_samples:
            for key, val in coarse_results.output.aux_losses.items():
                aux_losses[key + "_coarse"] = val

        channels = fine_results.output.channels
        shape = [1] * (channels.ndim - 1) + [len(self.texture_channels)]
        channels = channels * self.channel_scale.view(*shape)

        res = AttrDict(
            channels=channels,
            transmittance=fine_results.transmittance,
            raw_signed_distance=raw.signed_distance,
            raw_density=raw.density,
            distances=fine_results.output.distances,
            t0=fine_results.volume_range.t0,
            t1=fine_results.volume_range.t1,
            intersected=fine_results.volume_range.intersected,
            aux_losses=aux_losses,
        )

        if self.separate_shared_samples:
            res.update(
                dict(
                    channels_coarse=(
                        coarse_results.output.channels * self.channel_scale.view(*shape)
                    ),
                    distances_coarse=coarse_results.output.distances,
                    transmittance_coarse=coarse_results.transmittance,
                )
            )

        return res

    def render_views(
        self,
        batch: AttrDict,
        params: Optional[Dict] = None,
        options: Optional[AttrDict] = None,
    ) -> AttrDict:
        """
        Returns a backproppable rendering of a view

        :param batch: contains either ["poses", "camera"], or ["cameras"]. Can
            optionally contain any of ["height", "width", "query_batch_size"]

        :param params: Meta parameters
            contains rendering_mode in ["stf", "nerf"]
        :param options: controls checkpointing, caching, and rendering.
            Can provide a `rendering_mode` in ["stf", "nerf"]
        """
        params = self.update(params)
        options = AttrDict() if options is None else AttrDict(options)

        if options.cache is None:
            created_cache = True
            options.cache = AttrDict()
        else:
            created_cache = False

        rendering_mode = options.get("rendering_mode", "stf")
        # import pdb; pdb.set_trace()
        if rendering_mode == "nerf":

            output = render_views_from_rays(
                self.render_rays,
                batch,
                params=params,
                options=options,
                device=self.device,
                patch_size=self.patch_size,
                use_patch=self.use_patch
            )

        elif rendering_mode == "stf":

            sdf_fn = tf_fn = nerstf_fn = None
            if self.nerstf is not None:
                nerstf_fn = partial(
                    self.nerstf.forward_batched,
                    params=subdict(params, "nerstf"),
                    options=options,
                )
            else:
                sdf_fn = partial(
                    self.sdf.forward_batched,
                    params=subdict(params, "sdf"),
                    options=options,
                )
                tf_fn = partial(
                    self.tf.forward_batched,
                    params=subdict(params, "tf"),
                    options=options,
                )
            output = render_views_from_stf(
                batch,
                options,
                sdf_fn=sdf_fn,
                tf_fn=tf_fn,
                nerstf_fn=nerstf_fn,
                volume=self.volume,
                grid_size=self.grid_size,
                channel_scale=self.channel_scale,
                texture_channels=self.texture_channels,
                ambient_color=self.ambient_color,
                diffuse_color=self.diffuse_color,
                specular_color=self.specular_color,
                output_srgb=self.output_srgb,
                device=self.device,
            )

        else:

            raise NotImplementedError

        if created_cache:
            del options["cache"]

        return output

    def get_signed_distance(
        self,
        query: Query,
        params: Dict[str, torch.Tensor],
        options: AttrDict[str, Any],
    ) -> torch.Tensor:
        if self.sdf is not None:
            return self.sdf(query, params=subdict(params, "sdf"), options=options).signed_distance
        assert self.nerstf is not None
        return self.nerstf(query, params=subdict(params, "nerstf"), options=options).signed_distance

    def get_texture(
        self,
        query: Query,
        params: Dict[str, torch.Tensor],
        options: AttrDict[str, Any],
    ) -> torch.Tensor:
        if self.tf is not None:
            return self.tf(query, params=subdict(params, "tf"), options=options).channels
        assert self.nerstf is not None
        return self.nerstf(query, params=subdict(params, "nerstf"), options=options).channels