File size: 8,080 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from abc import ABC, abstractmethod
from functools import partial
from typing import Any, Dict, Optional, Tuple

import numpy as np
import torch
import torch.nn as nn

from shap_e.models.nn.checkpoint import checkpoint
from shap_e.models.nn.encoding import encode_position, spherical_harmonics_basis
from shap_e.models.nn.meta import MetaModule, subdict
from shap_e.models.nn.ops import MLP, MetaMLP, get_act, mlp_init, zero_init
from shap_e.models.nn.utils import ArrayType
from shap_e.models.query import Query
from shap_e.util.collections import AttrDict


class NeRFModel(ABC):
    """
    Parametric scene representation whose outputs are integrated by NeRFRenderer
    """

    @abstractmethod
    def forward(
        self,
        query: Query,
        params: Optional[Dict[str, torch.Tensor]] = None,
        options: Optional[Dict[str, Any]] = None,
    ) -> AttrDict:
        """
        :param query: the points in the field to query.
        :param params: Meta parameters
        :param options: Optional hyperparameters
        :return: An AttrDict containing at least
            - density: [batch_size x ... x 1]
            - channels: [batch_size x ... x n_channels]
            - aux_losses: [batch_size x ... x 1]
        """


class VoidNeRFModel(MetaModule, NeRFModel):
    """
    Implements the default empty space model where all queries are rendered as
    background.
    """

    def __init__(
        self,
        background: ArrayType,
        trainable: bool = False,
        channel_scale: float = 255.0,
        device: torch.device = torch.device("cuda"),
    ):
        super().__init__()
        background = nn.Parameter(
            torch.from_numpy(np.array(background)).to(dtype=torch.float32, device=device)
            / channel_scale
        )
        if trainable:
            self.register_parameter("background", background)
        else:
            self.register_buffer("background", background)

    def forward(
        self,
        query: Query,
        params: Optional[Dict[str, torch.Tensor]] = None,
        options: Optional[Dict[str, Any]] = None,
    ) -> AttrDict:
        _ = params
        default_bg = self.background[None]
        background = options.get("background", default_bg) if options is not None else default_bg

        shape = query.position.shape[:-1]
        ones = [1] * (len(shape) - 1)
        n_channels = background.shape[-1]
        background = torch.broadcast_to(
            background.view(background.shape[0], *ones, n_channels), [*shape, n_channels]
        )
        return background


class MLPNeRFModel(MetaModule, NeRFModel):
    def __init__(
        self,
        # Positional encoding parameters
        n_levels: int = 10,
        # MLP parameters
        d_hidden: int = 256,
        n_density_layers: int = 4,
        n_channel_layers: int = 1,
        n_channels: int = 3,
        sh_degree: int = 4,
        activation: str = "relu",
        density_activation: str = "exp",
        init: Optional[str] = None,
        init_scale: float = 1.0,
        output_activation: str = "sigmoid",
        meta_parameters: bool = False,
        trainable_meta: bool = False,
        zero_out: bool = True,
        register_freqs: bool = True,
        posenc_version: str = "v1",
        device: torch.device = torch.device("cuda"),
    ):
        super().__init__()

        # Positional encoding
        if register_freqs:
            # not used anymore
            self.register_buffer(
                "freqs",
                2.0 ** torch.arange(n_levels, device=device, dtype=torch.float).view(1, n_levels),
            )

        self.posenc_version = posenc_version
        dummy = torch.eye(1, 3)
        d_input = encode_position(posenc_version, position=dummy).shape[-1]

        self.n_levels = n_levels

        self.sh_degree = sh_degree
        d_sh_coeffs = sh_degree**2

        self.meta_parameters = meta_parameters

        mlp_cls = (
            partial(
                MetaMLP,
                meta_scale=False,
                meta_shift=False,
                meta_proj=True,
                meta_bias=True,
                trainable_meta=trainable_meta,
            )
            if meta_parameters
            else MLP
        )

        self.density_mlp = mlp_cls(
            d_input=d_input,
            d_hidden=[d_hidden] * (n_density_layers - 1),
            d_output=d_hidden,
            act_name=activation,
            init_scale=init_scale,
        )

        self.channel_mlp = mlp_cls(
            d_input=d_hidden + d_sh_coeffs,
            d_hidden=[d_hidden] * n_channel_layers,
            d_output=n_channels,
            act_name=activation,
            init_scale=init_scale,
        )

        self.act = get_act(output_activation)
        self.density_act = get_act(density_activation)

        mlp_init(
            list(self.density_mlp.affines) + list(self.channel_mlp.affines),
            init=init,
            init_scale=init_scale,
        )

        if zero_out:
            zero_init(self.channel_mlp.affines[-1])

        self.to(device)

    def encode_position(self, query: Query):
        h = encode_position(self.posenc_version, position=query.position)
        return h

    def forward(
        self,
        query: Query,
        params: Optional[Dict[str, torch.Tensor]] = None,
        options: Optional[Dict[str, Any]] = None,
    ) -> AttrDict:
        params = self.update(params)

        options = AttrDict() if options is None else AttrDict(options)

        query = query.copy()

        h_position = self.encode_position(query)

        if self.meta_parameters:
            density_params = subdict(params, "density_mlp")
            density_mlp = partial(
                self.density_mlp, params=density_params, options=options, log_prefix="density_"
            )
            density_mlp_parameters = list(density_params.values())
        else:
            density_mlp = partial(self.density_mlp, options=options, log_prefix="density_")
            density_mlp_parameters = self.density_mlp.parameters()
        h_density = checkpoint(
            density_mlp,
            (h_position,),
            density_mlp_parameters,
            options.checkpoint_nerf_mlp,
        )
        h_direction = maybe_get_spherical_harmonics_basis(
            sh_degree=self.sh_degree,
            coords_shape=query.position.shape,
            coords=query.direction,
            device=query.position.device,
        )

        if self.meta_parameters:
            channel_params = subdict(params, "channel_mlp")
            channel_mlp = partial(
                self.channel_mlp, params=channel_params, options=options, log_prefix="channel_"
            )
            channel_mlp_parameters = list(channel_params.values())
        else:
            channel_mlp = partial(self.channel_mlp, options=options, log_prefix="channel_")
            channel_mlp_parameters = self.channel_mlp.parameters()
        h_channel = checkpoint(
            channel_mlp,
            (torch.cat([h_density, h_direction], dim=-1),),
            channel_mlp_parameters,
            options.checkpoint_nerf_mlp,
        )

        density_logit = h_density[..., :1]

        res = AttrDict(
            density_logit=density_logit,
            density=self.density_act(density_logit),
            channels=self.act(h_channel),
            aux_losses=AttrDict(),
            no_weight_grad_aux_losses=AttrDict(),
        )
        if options.return_h_density:
            res.h_density = h_density

        return res


def maybe_get_spherical_harmonics_basis(
    sh_degree: int,
    coords_shape: Tuple[int],
    coords: Optional[torch.Tensor] = None,
    device: torch.device = torch.device("cuda"),
) -> torch.Tensor:
    """
    :param sh_degree: Spherical harmonics degree
    :param coords_shape: [*shape, 3]
    :param coords: optional coordinate tensor of coords_shape
    """
    if coords is None:
        return torch.zeros(*coords_shape[:-1], sh_degree**2).to(device)

    return spherical_harmonics_basis(coords, sh_degree)