File size: 17,271 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import math
from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple

import torch
import torch.nn as nn

from shap_e.models.nn.checkpoint import checkpoint

from .pretrained_clip import FrozenImageCLIP, ImageCLIP, ImageType
from .util import timestep_embedding

def init_linear(l, stddev):
    nn.init.normal_(l.weight, std=stddev)
    if l.bias is not None:
        nn.init.constant_(l.bias, 0.0)


class MultiheadAttention(nn.Module):
    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        n_ctx: int,
        width: int,
        heads: int,
        init_scale: float,
    ):
        super().__init__()
        self.n_ctx = n_ctx
        self.width = width
        self.heads = heads
        self.c_qkv = nn.Linear(width, width * 3, device=device, dtype=dtype)
        self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
        self.attention = QKVMultiheadAttention(device=device, dtype=dtype, heads=heads, n_ctx=n_ctx)
        init_linear(self.c_qkv, init_scale)
        init_linear(self.c_proj, init_scale)

    def forward(self, x):
        x = self.c_qkv(x)
        x = checkpoint(self.attention, (x,), (), True)
        x = self.c_proj(x)
        return x


class MLP(nn.Module):
    def __init__(self, *, device: torch.device, dtype: torch.dtype, width: int, init_scale: float):
        super().__init__()
        self.width = width
        self.c_fc = nn.Linear(width, width * 4, device=device, dtype=dtype)
        self.c_proj = nn.Linear(width * 4, width, device=device, dtype=dtype)
        self.gelu = nn.GELU()
        init_linear(self.c_fc, init_scale)
        init_linear(self.c_proj, init_scale)

    def forward(self, x):
        return self.c_proj(self.gelu(self.c_fc(x)))


class QKVMultiheadAttention(nn.Module):
    def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int):
        super().__init__()
        self.device = device
        self.dtype = dtype
        self.heads = heads
        self.n_ctx = n_ctx

    def forward(self, qkv):
        bs, n_ctx, width = qkv.shape
        attn_ch = width // self.heads // 3
        scale = 1 / math.sqrt(math.sqrt(attn_ch))
        qkv = qkv.view(bs, n_ctx, self.heads, -1)
        q, k, v = torch.split(qkv, attn_ch, dim=-1)
        weight = torch.einsum(
            "bthc,bshc->bhts", q * scale, k * scale
        )  # More stable with f16 than dividing afterwards
        wdtype = weight.dtype
        weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
        return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)


class ResidualAttentionBlock(nn.Module):
    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        n_ctx: int,
        width: int,
        heads: int,
        init_scale: float = 1.0,
    ):
        super().__init__()

        self.attn = MultiheadAttention(
            device=device,
            dtype=dtype,
            n_ctx=n_ctx,
            width=width,
            heads=heads,
            init_scale=init_scale,
        )
        self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
        self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
        self.ln_2 = nn.LayerNorm(width, device=device, dtype=dtype)

    def forward(self, x: torch.Tensor):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


class Transformer(nn.Module):
    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        n_ctx: int,
        width: int,
        layers: int,
        heads: int,
        init_scale: float = 0.25,
    ):
        super().__init__()
        self.n_ctx = n_ctx
        self.width = width
        self.layers = layers
        init_scale = init_scale * math.sqrt(1.0 / width)
        self.resblocks = nn.ModuleList(
            [
                ResidualAttentionBlock(
                    device=device,
                    dtype=dtype,
                    n_ctx=n_ctx,
                    width=width,
                    heads=heads,
                    init_scale=init_scale,
                )
                for _ in range(layers)
            ]
        )

    def forward(self, x: torch.Tensor):
        for block in self.resblocks:
            x = block(x)
        return x


class PointDiffusionTransformer(nn.Module):
    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        input_channels: int = 3,
        output_channels: int = 3,
        n_ctx: int = 1024,
        width: int = 512,
        layers: int = 12,
        heads: int = 8,
        init_scale: float = 0.25,
        time_token_cond: bool = False,
        use_pos_emb: bool = False,
        pos_emb_init_scale: float = 1.0,
        pos_emb_n_ctx: Optional[int] = None,
    ):
        super().__init__()
        self.input_channels = input_channels
        self.output_channels = output_channels
        self.n_ctx = n_ctx
        self.time_token_cond = time_token_cond
        self.use_pos_emb = use_pos_emb
        self.time_embed = MLP(
            device=device, dtype=dtype, width=width, init_scale=init_scale * math.sqrt(1.0 / width)
        )
        self.ln_pre = nn.LayerNorm(width, device=device, dtype=dtype)
        self.backbone = Transformer(
            device=device,
            dtype=dtype,
            n_ctx=n_ctx + int(time_token_cond),
            width=width,
            layers=layers,
            heads=heads,
            init_scale=init_scale,
        )
        self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
        self.input_proj = nn.Linear(input_channels, width, device=device, dtype=dtype)
        self.output_proj = nn.Linear(width, output_channels, device=device, dtype=dtype)
        # with torch.no_grad():
        #     self.output_proj.weight.zero_()
        #     self.output_proj.bias.zero_()
        if self.use_pos_emb:
            self.register_parameter(
                "pos_emb",
                nn.Parameter(
                    pos_emb_init_scale
                    * torch.randn(pos_emb_n_ctx or self.n_ctx, width, device=device, dtype=dtype)
                ),
            )

    def forward(self, x: torch.Tensor, t: torch.Tensor):
        """
        :param x: an [N x C x T] tensor.
        :param t: an [N] tensor.
        :return: an [N x C' x T] tensor.
        """
        assert x.shape[-1] == self.n_ctx
        t_embed = self.time_embed(timestep_embedding(t, self.backbone.width))
        return self._forward_with_cond(x, [(t_embed, self.time_token_cond)])

    def _forward_with_cond(
        self, x: torch.Tensor, cond_as_token: List[Tuple[torch.Tensor, bool]]
    ) -> torch.Tensor:
        h = self.input_proj(x.permute(0, 2, 1))  # NCL -> NLC
        for emb, as_token in cond_as_token:
            if not as_token:
                h = h + emb[:, None]
        if self.use_pos_emb:
            h = h + self.pos_emb
        extra_tokens = [
            (emb[:, None] if len(emb.shape) == 2 else emb)
            for emb, as_token in cond_as_token
            if as_token
        ]
        if len(extra_tokens):
            h = torch.cat(extra_tokens + [h], dim=1)
        h = self.ln_pre(h)
        h = self.backbone(h)
        h = self.ln_post(h)
        if len(extra_tokens):
            h = h[:, sum(h.shape[1] for h in extra_tokens):]
        h = self.output_proj(h)
        return h.permute(0, 2, 1) # NCL -> NLC




class CLIPImagePointDiffusionTransformer(PointDiffusionTransformer):
    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        n_ctx: int = 1024,
        token_cond: bool = False,
        cond_drop_prob: float = 0.0,
        frozen_clip: bool = True,
        **kwargs,
    ):
        super().__init__(
            device=device, dtype=dtype, n_ctx=n_ctx + int(token_cond), pos_emb_n_ctx=n_ctx, **kwargs
        )
        # print("!!!!!", "deivce:", device, "dtype:", dtype, "n_ctx:", n_ctx, "token_cond:", token_cond, "cond_drop_prob:", cond_drop_prob, "frozen_clip:", frozen_clip, "kwargs:", kwargs)
        self.n_ctx = n_ctx
        self.token_cond = token_cond
        self.clip = (FrozenImageCLIP if frozen_clip else ImageCLIP)(device)
        self.clip_embed = nn.Linear(
            self.clip.feature_dim, self.backbone.width, device=device, dtype=dtype
        )
        self.cond_drop_prob = cond_drop_prob

    def cached_model_kwargs(self, batch_size: int, model_kwargs: Dict[str, Any]) -> Dict[str, Any]:
        with torch.no_grad():
            return dict(embeddings=self.clip(batch_size, **model_kwargs))

    def forward(
        self,
        x: torch.Tensor,
        t: torch.Tensor,
        images: Optional[Iterable[Optional[ImageType]]] = None,
        texts: Optional[Iterable[Optional[str]]] = None,
        embeddings: Optional[Iterable[Optional[torch.Tensor]]] = None,
    ):
        """
        :param x: an [N x C x T] tensor.
        :param t: an [N] tensor.
        :param images: a batch of images to condition on.
        :param texts: a batch of texts to condition on.
        :param embeddings: a batch of CLIP embeddings to condition on.
        :return: an [N x C' x T] tensor.
        """
        # print("x.shape", x.shape, "t.shape", t.shape, "images", images, "texts", texts, "embeddings", embeddings)
        assert x.shape[-1] == self.n_ctx # self.n_ctx = 1024

        t_embed = self.time_embed(timestep_embedding(t, self.backbone.width))
        clip_out = self.clip(batch_size=len(x), images=images, texts=texts, embeddings=embeddings)
        assert len(clip_out.shape) == 2 and clip_out.shape[0] == x.shape[0]

        if self.training:
            mask = torch.rand(size=[len(x)]) >= self.cond_drop_prob
            clip_out = clip_out * mask[:, None].to(clip_out)

        # Rescale the features to have unit variance
        clip_out = math.sqrt(clip_out.shape[1]) * clip_out

        clip_embed = self.clip_embed(clip_out)

        cond = [(clip_embed, self.token_cond), (t_embed, self.time_token_cond)]
        return self._forward_with_cond(x, cond)


class CLIPImageGridPointDiffusionTransformer(PointDiffusionTransformer):
    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        n_ctx: int = 1024,
        cond_drop_prob: float = 0.0,
        frozen_clip: bool = True,
        **kwargs,
    ):
        clip = (FrozenImageCLIP if frozen_clip else ImageCLIP)(device)
        super().__init__(
            device=device,
            dtype=dtype,
            n_ctx=n_ctx + clip.grid_size**2,
            pos_emb_n_ctx=n_ctx,
            **kwargs,
        )
        self.n_ctx = n_ctx
        self.clip = clip
        self.clip_embed = nn.Sequential(
            nn.LayerNorm(
                normalized_shape=(self.clip.grid_feature_dim,), device=device, dtype=dtype
            ),
            nn.Linear(self.clip.grid_feature_dim, self.backbone.width, device=device, dtype=dtype),
        )
        self.cond_drop_prob = cond_drop_prob

    def cached_model_kwargs(self, batch_size: int, model_kwargs: Dict[str, Any]) -> Dict[str, Any]:
        _ = batch_size
        with torch.no_grad():
            return dict(embeddings=self.clip.embed_images_grid(model_kwargs["images"]))

    def forward(
        self,
        x: torch.Tensor,
        t: torch.Tensor,
        images: Optional[Iterable[ImageType]] = None,
        embeddings: Optional[Iterable[torch.Tensor]] = None,
    ):
        """
        :param x: an [N x C x T] tensor.
        :param t: an [N] tensor.
        :param images: a batch of images to condition on.
        :param embeddings: a batch of CLIP latent grids to condition on.
        :return: an [N x C' x T] tensor.
        """
        assert images is not None or embeddings is not None, "must specify images or embeddings"
        assert images is None or embeddings is None, "cannot specify both images and embeddings"
        assert x.shape[-1] == self.n_ctx

        t_embed = self.time_embed(timestep_embedding(t, self.backbone.width))

        if images is not None:
            clip_out = self.clip.embed_images_grid(images)
        else:
            clip_out = embeddings

        if self.training:
            mask = torch.rand(size=[len(x)]) >= self.cond_drop_prob
            clip_out = clip_out * mask[:, None, None].to(clip_out)

        clip_out = clip_out.permute(0, 2, 1)  # NCL -> NLC
        clip_embed = self.clip_embed(clip_out)

        cond = [(t_embed, self.time_token_cond), (clip_embed, True)]
        return self._forward_with_cond(x, cond)


class UpsamplePointDiffusionTransformer(PointDiffusionTransformer):
    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        cond_input_channels: Optional[int] = None,
        cond_ctx: int = 1024,
        n_ctx: int = 4096 - 1024,
        channel_scales: Optional[Sequence[float]] = None,
        channel_biases: Optional[Sequence[float]] = None,
        **kwargs,
    ):
        super().__init__(device=device, dtype=dtype, n_ctx=n_ctx + cond_ctx, **kwargs)
        self.n_ctx = n_ctx
        self.cond_input_channels = cond_input_channels or self.input_channels
        self.cond_point_proj = nn.Linear(
            self.cond_input_channels, self.backbone.width, device=device, dtype=dtype
        )

        self.register_buffer(
            "channel_scales",
            torch.tensor(channel_scales, dtype=dtype, device=device)
            if channel_scales is not None
            else None,
        )
        self.register_buffer(
            "channel_biases",
            torch.tensor(channel_biases, dtype=dtype, device=device)
            if channel_biases is not None
            else None,
        )

    def forward(self, x: torch.Tensor, t: torch.Tensor, *, low_res: torch.Tensor):
        """
        :param x: an [N x C1 x T] tensor.
        :param t: an [N] tensor.
        :param low_res: an [N x C2 x T'] tensor of conditioning points.
        :return: an [N x C3 x T] tensor.
        """
        assert x.shape[-1] == self.n_ctx
        t_embed = self.time_embed(timestep_embedding(t, self.backbone.width))
        low_res_embed = self._embed_low_res(low_res)
        cond = [(t_embed, self.time_token_cond), (low_res_embed, True)]
        return self._forward_with_cond(x, cond)

    def _embed_low_res(self, x: torch.Tensor) -> torch.Tensor:
        if self.channel_scales is not None:
            x = x * self.channel_scales[None, :, None]
        if self.channel_biases is not None:
            x = x + self.channel_biases[None, :, None]
        return self.cond_point_proj(x.permute(0, 2, 1))


class CLIPImageGridUpsamplePointDiffusionTransformer(UpsamplePointDiffusionTransformer):
    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        n_ctx: int = 4096 - 1024,
        cond_drop_prob: float = 0.0,
        frozen_clip: bool = True,
        **kwargs,
    ):
        clip = (FrozenImageCLIP if frozen_clip else ImageCLIP)(device)
        super().__init__(device=device, dtype=dtype, n_ctx=n_ctx + clip.grid_size**2, **kwargs)
        self.n_ctx = n_ctx

        self.clip = clip
        self.clip_embed = nn.Sequential(
            nn.LayerNorm(
                normalized_shape=(self.clip.grid_feature_dim,), device=device, dtype=dtype
            ),
            nn.Linear(self.clip.grid_feature_dim, self.backbone.width, device=device, dtype=dtype),
        )
        self.cond_drop_prob = cond_drop_prob

    def cached_model_kwargs(self, batch_size: int, model_kwargs: Dict[str, Any]) -> Dict[str, Any]:
        _ = batch_size
        with torch.no_grad():
            return dict(
                embeddings=self.clip.embed_images_grid(model_kwargs["images"]),
                low_res=model_kwargs["low_res"],
            )

    def forward(
        self,
        x: torch.Tensor,
        t: torch.Tensor,
        *,
        low_res: torch.Tensor,
        images: Optional[Iterable[ImageType]] = None,
        embeddings: Optional[Iterable[torch.Tensor]] = None,
    ):
        """
        :param x: an [N x C1 x T] tensor.
        :param t: an [N] tensor.
        :param low_res: an [N x C2 x T'] tensor of conditioning points.
        :param images: a batch of images to condition on.
        :param embeddings: a batch of CLIP latent grids to condition on.
        :return: an [N x C3 x T] tensor.
        """
        assert x.shape[-1] == self.n_ctx
        t_embed = self.time_embed(timestep_embedding(t, self.backbone.width))
        low_res_embed = self._embed_low_res(low_res)

        if images is not None:
            clip_out = self.clip.embed_images_grid(images)
        else:
            clip_out = embeddings

        if self.training:
            mask = torch.rand(size=[len(x)]) >= self.cond_drop_prob
            clip_out = clip_out * mask[:, None, None].to(clip_out)

        clip_out = clip_out.permute(0, 2, 1)  # NCL -> NLC
        clip_embed = self.clip_embed(clip_out)

        cond = [(t_embed, self.time_token_cond), (clip_embed, True), (low_res_embed, True)]
        return self._forward_with_cond(x, cond)