Spaces:
Runtime error
Runtime error
File size: 17,271 Bytes
19c4ddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
import math
from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple
import torch
import torch.nn as nn
from shap_e.models.nn.checkpoint import checkpoint
from .pretrained_clip import FrozenImageCLIP, ImageCLIP, ImageType
from .util import timestep_embedding
def init_linear(l, stddev):
nn.init.normal_(l.weight, std=stddev)
if l.bias is not None:
nn.init.constant_(l.bias, 0.0)
class MultiheadAttention(nn.Module):
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
n_ctx: int,
width: int,
heads: int,
init_scale: float,
):
super().__init__()
self.n_ctx = n_ctx
self.width = width
self.heads = heads
self.c_qkv = nn.Linear(width, width * 3, device=device, dtype=dtype)
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
self.attention = QKVMultiheadAttention(device=device, dtype=dtype, heads=heads, n_ctx=n_ctx)
init_linear(self.c_qkv, init_scale)
init_linear(self.c_proj, init_scale)
def forward(self, x):
x = self.c_qkv(x)
x = checkpoint(self.attention, (x,), (), True)
x = self.c_proj(x)
return x
class MLP(nn.Module):
def __init__(self, *, device: torch.device, dtype: torch.dtype, width: int, init_scale: float):
super().__init__()
self.width = width
self.c_fc = nn.Linear(width, width * 4, device=device, dtype=dtype)
self.c_proj = nn.Linear(width * 4, width, device=device, dtype=dtype)
self.gelu = nn.GELU()
init_linear(self.c_fc, init_scale)
init_linear(self.c_proj, init_scale)
def forward(self, x):
return self.c_proj(self.gelu(self.c_fc(x)))
class QKVMultiheadAttention(nn.Module):
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int):
super().__init__()
self.device = device
self.dtype = dtype
self.heads = heads
self.n_ctx = n_ctx
def forward(self, qkv):
bs, n_ctx, width = qkv.shape
attn_ch = width // self.heads // 3
scale = 1 / math.sqrt(math.sqrt(attn_ch))
qkv = qkv.view(bs, n_ctx, self.heads, -1)
q, k, v = torch.split(qkv, attn_ch, dim=-1)
weight = torch.einsum(
"bthc,bshc->bhts", q * scale, k * scale
) # More stable with f16 than dividing afterwards
wdtype = weight.dtype
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
n_ctx: int,
width: int,
heads: int,
init_scale: float = 1.0,
):
super().__init__()
self.attn = MultiheadAttention(
device=device,
dtype=dtype,
n_ctx=n_ctx,
width=width,
heads=heads,
init_scale=init_scale,
)
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
self.ln_2 = nn.LayerNorm(width, device=device, dtype=dtype)
def forward(self, x: torch.Tensor):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
n_ctx: int,
width: int,
layers: int,
heads: int,
init_scale: float = 0.25,
):
super().__init__()
self.n_ctx = n_ctx
self.width = width
self.layers = layers
init_scale = init_scale * math.sqrt(1.0 / width)
self.resblocks = nn.ModuleList(
[
ResidualAttentionBlock(
device=device,
dtype=dtype,
n_ctx=n_ctx,
width=width,
heads=heads,
init_scale=init_scale,
)
for _ in range(layers)
]
)
def forward(self, x: torch.Tensor):
for block in self.resblocks:
x = block(x)
return x
class PointDiffusionTransformer(nn.Module):
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
input_channels: int = 3,
output_channels: int = 3,
n_ctx: int = 1024,
width: int = 512,
layers: int = 12,
heads: int = 8,
init_scale: float = 0.25,
time_token_cond: bool = False,
use_pos_emb: bool = False,
pos_emb_init_scale: float = 1.0,
pos_emb_n_ctx: Optional[int] = None,
):
super().__init__()
self.input_channels = input_channels
self.output_channels = output_channels
self.n_ctx = n_ctx
self.time_token_cond = time_token_cond
self.use_pos_emb = use_pos_emb
self.time_embed = MLP(
device=device, dtype=dtype, width=width, init_scale=init_scale * math.sqrt(1.0 / width)
)
self.ln_pre = nn.LayerNorm(width, device=device, dtype=dtype)
self.backbone = Transformer(
device=device,
dtype=dtype,
n_ctx=n_ctx + int(time_token_cond),
width=width,
layers=layers,
heads=heads,
init_scale=init_scale,
)
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
self.input_proj = nn.Linear(input_channels, width, device=device, dtype=dtype)
self.output_proj = nn.Linear(width, output_channels, device=device, dtype=dtype)
# with torch.no_grad():
# self.output_proj.weight.zero_()
# self.output_proj.bias.zero_()
if self.use_pos_emb:
self.register_parameter(
"pos_emb",
nn.Parameter(
pos_emb_init_scale
* torch.randn(pos_emb_n_ctx or self.n_ctx, width, device=device, dtype=dtype)
),
)
def forward(self, x: torch.Tensor, t: torch.Tensor):
"""
:param x: an [N x C x T] tensor.
:param t: an [N] tensor.
:return: an [N x C' x T] tensor.
"""
assert x.shape[-1] == self.n_ctx
t_embed = self.time_embed(timestep_embedding(t, self.backbone.width))
return self._forward_with_cond(x, [(t_embed, self.time_token_cond)])
def _forward_with_cond(
self, x: torch.Tensor, cond_as_token: List[Tuple[torch.Tensor, bool]]
) -> torch.Tensor:
h = self.input_proj(x.permute(0, 2, 1)) # NCL -> NLC
for emb, as_token in cond_as_token:
if not as_token:
h = h + emb[:, None]
if self.use_pos_emb:
h = h + self.pos_emb
extra_tokens = [
(emb[:, None] if len(emb.shape) == 2 else emb)
for emb, as_token in cond_as_token
if as_token
]
if len(extra_tokens):
h = torch.cat(extra_tokens + [h], dim=1)
h = self.ln_pre(h)
h = self.backbone(h)
h = self.ln_post(h)
if len(extra_tokens):
h = h[:, sum(h.shape[1] for h in extra_tokens):]
h = self.output_proj(h)
return h.permute(0, 2, 1) # NCL -> NLC
class CLIPImagePointDiffusionTransformer(PointDiffusionTransformer):
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
n_ctx: int = 1024,
token_cond: bool = False,
cond_drop_prob: float = 0.0,
frozen_clip: bool = True,
**kwargs,
):
super().__init__(
device=device, dtype=dtype, n_ctx=n_ctx + int(token_cond), pos_emb_n_ctx=n_ctx, **kwargs
)
# print("!!!!!", "deivce:", device, "dtype:", dtype, "n_ctx:", n_ctx, "token_cond:", token_cond, "cond_drop_prob:", cond_drop_prob, "frozen_clip:", frozen_clip, "kwargs:", kwargs)
self.n_ctx = n_ctx
self.token_cond = token_cond
self.clip = (FrozenImageCLIP if frozen_clip else ImageCLIP)(device)
self.clip_embed = nn.Linear(
self.clip.feature_dim, self.backbone.width, device=device, dtype=dtype
)
self.cond_drop_prob = cond_drop_prob
def cached_model_kwargs(self, batch_size: int, model_kwargs: Dict[str, Any]) -> Dict[str, Any]:
with torch.no_grad():
return dict(embeddings=self.clip(batch_size, **model_kwargs))
def forward(
self,
x: torch.Tensor,
t: torch.Tensor,
images: Optional[Iterable[Optional[ImageType]]] = None,
texts: Optional[Iterable[Optional[str]]] = None,
embeddings: Optional[Iterable[Optional[torch.Tensor]]] = None,
):
"""
:param x: an [N x C x T] tensor.
:param t: an [N] tensor.
:param images: a batch of images to condition on.
:param texts: a batch of texts to condition on.
:param embeddings: a batch of CLIP embeddings to condition on.
:return: an [N x C' x T] tensor.
"""
# print("x.shape", x.shape, "t.shape", t.shape, "images", images, "texts", texts, "embeddings", embeddings)
assert x.shape[-1] == self.n_ctx # self.n_ctx = 1024
t_embed = self.time_embed(timestep_embedding(t, self.backbone.width))
clip_out = self.clip(batch_size=len(x), images=images, texts=texts, embeddings=embeddings)
assert len(clip_out.shape) == 2 and clip_out.shape[0] == x.shape[0]
if self.training:
mask = torch.rand(size=[len(x)]) >= self.cond_drop_prob
clip_out = clip_out * mask[:, None].to(clip_out)
# Rescale the features to have unit variance
clip_out = math.sqrt(clip_out.shape[1]) * clip_out
clip_embed = self.clip_embed(clip_out)
cond = [(clip_embed, self.token_cond), (t_embed, self.time_token_cond)]
return self._forward_with_cond(x, cond)
class CLIPImageGridPointDiffusionTransformer(PointDiffusionTransformer):
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
n_ctx: int = 1024,
cond_drop_prob: float = 0.0,
frozen_clip: bool = True,
**kwargs,
):
clip = (FrozenImageCLIP if frozen_clip else ImageCLIP)(device)
super().__init__(
device=device,
dtype=dtype,
n_ctx=n_ctx + clip.grid_size**2,
pos_emb_n_ctx=n_ctx,
**kwargs,
)
self.n_ctx = n_ctx
self.clip = clip
self.clip_embed = nn.Sequential(
nn.LayerNorm(
normalized_shape=(self.clip.grid_feature_dim,), device=device, dtype=dtype
),
nn.Linear(self.clip.grid_feature_dim, self.backbone.width, device=device, dtype=dtype),
)
self.cond_drop_prob = cond_drop_prob
def cached_model_kwargs(self, batch_size: int, model_kwargs: Dict[str, Any]) -> Dict[str, Any]:
_ = batch_size
with torch.no_grad():
return dict(embeddings=self.clip.embed_images_grid(model_kwargs["images"]))
def forward(
self,
x: torch.Tensor,
t: torch.Tensor,
images: Optional[Iterable[ImageType]] = None,
embeddings: Optional[Iterable[torch.Tensor]] = None,
):
"""
:param x: an [N x C x T] tensor.
:param t: an [N] tensor.
:param images: a batch of images to condition on.
:param embeddings: a batch of CLIP latent grids to condition on.
:return: an [N x C' x T] tensor.
"""
assert images is not None or embeddings is not None, "must specify images or embeddings"
assert images is None or embeddings is None, "cannot specify both images and embeddings"
assert x.shape[-1] == self.n_ctx
t_embed = self.time_embed(timestep_embedding(t, self.backbone.width))
if images is not None:
clip_out = self.clip.embed_images_grid(images)
else:
clip_out = embeddings
if self.training:
mask = torch.rand(size=[len(x)]) >= self.cond_drop_prob
clip_out = clip_out * mask[:, None, None].to(clip_out)
clip_out = clip_out.permute(0, 2, 1) # NCL -> NLC
clip_embed = self.clip_embed(clip_out)
cond = [(t_embed, self.time_token_cond), (clip_embed, True)]
return self._forward_with_cond(x, cond)
class UpsamplePointDiffusionTransformer(PointDiffusionTransformer):
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
cond_input_channels: Optional[int] = None,
cond_ctx: int = 1024,
n_ctx: int = 4096 - 1024,
channel_scales: Optional[Sequence[float]] = None,
channel_biases: Optional[Sequence[float]] = None,
**kwargs,
):
super().__init__(device=device, dtype=dtype, n_ctx=n_ctx + cond_ctx, **kwargs)
self.n_ctx = n_ctx
self.cond_input_channels = cond_input_channels or self.input_channels
self.cond_point_proj = nn.Linear(
self.cond_input_channels, self.backbone.width, device=device, dtype=dtype
)
self.register_buffer(
"channel_scales",
torch.tensor(channel_scales, dtype=dtype, device=device)
if channel_scales is not None
else None,
)
self.register_buffer(
"channel_biases",
torch.tensor(channel_biases, dtype=dtype, device=device)
if channel_biases is not None
else None,
)
def forward(self, x: torch.Tensor, t: torch.Tensor, *, low_res: torch.Tensor):
"""
:param x: an [N x C1 x T] tensor.
:param t: an [N] tensor.
:param low_res: an [N x C2 x T'] tensor of conditioning points.
:return: an [N x C3 x T] tensor.
"""
assert x.shape[-1] == self.n_ctx
t_embed = self.time_embed(timestep_embedding(t, self.backbone.width))
low_res_embed = self._embed_low_res(low_res)
cond = [(t_embed, self.time_token_cond), (low_res_embed, True)]
return self._forward_with_cond(x, cond)
def _embed_low_res(self, x: torch.Tensor) -> torch.Tensor:
if self.channel_scales is not None:
x = x * self.channel_scales[None, :, None]
if self.channel_biases is not None:
x = x + self.channel_biases[None, :, None]
return self.cond_point_proj(x.permute(0, 2, 1))
class CLIPImageGridUpsamplePointDiffusionTransformer(UpsamplePointDiffusionTransformer):
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
n_ctx: int = 4096 - 1024,
cond_drop_prob: float = 0.0,
frozen_clip: bool = True,
**kwargs,
):
clip = (FrozenImageCLIP if frozen_clip else ImageCLIP)(device)
super().__init__(device=device, dtype=dtype, n_ctx=n_ctx + clip.grid_size**2, **kwargs)
self.n_ctx = n_ctx
self.clip = clip
self.clip_embed = nn.Sequential(
nn.LayerNorm(
normalized_shape=(self.clip.grid_feature_dim,), device=device, dtype=dtype
),
nn.Linear(self.clip.grid_feature_dim, self.backbone.width, device=device, dtype=dtype),
)
self.cond_drop_prob = cond_drop_prob
def cached_model_kwargs(self, batch_size: int, model_kwargs: Dict[str, Any]) -> Dict[str, Any]:
_ = batch_size
with torch.no_grad():
return dict(
embeddings=self.clip.embed_images_grid(model_kwargs["images"]),
low_res=model_kwargs["low_res"],
)
def forward(
self,
x: torch.Tensor,
t: torch.Tensor,
*,
low_res: torch.Tensor,
images: Optional[Iterable[ImageType]] = None,
embeddings: Optional[Iterable[torch.Tensor]] = None,
):
"""
:param x: an [N x C1 x T] tensor.
:param t: an [N] tensor.
:param low_res: an [N x C2 x T'] tensor of conditioning points.
:param images: a batch of images to condition on.
:param embeddings: a batch of CLIP latent grids to condition on.
:return: an [N x C3 x T] tensor.
"""
assert x.shape[-1] == self.n_ctx
t_embed = self.time_embed(timestep_embedding(t, self.backbone.width))
low_res_embed = self._embed_low_res(low_res)
if images is not None:
clip_out = self.clip.embed_images_grid(images)
else:
clip_out = embeddings
if self.training:
mask = torch.rand(size=[len(x)]) >= self.cond_drop_prob
clip_out = clip_out * mask[:, None, None].to(clip_out)
clip_out = clip_out.permute(0, 2, 1) # NCL -> NLC
clip_embed = self.clip_embed(clip_out)
cond = [(t_embed, self.time_token_cond), (clip_embed, True), (low_res_embed, True)]
return self._forward_with_cond(x, cond)
|