File size: 7,551 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import math
from typing import Optional

import torch
import torch.nn as nn

from shap_e.models.nn.checkpoint import checkpoint

from .transformer import MLP, Transformer, init_linear
from .util import timestep_embedding


class MultiheadCrossAttention(nn.Module):
    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        n_ctx: int,
        n_data: int,
        width: int,
        heads: int,
        init_scale: float,
        data_width: Optional[int] = None,
    ):
        super().__init__()
        self.n_ctx = n_ctx
        self.n_data = n_data
        self.width = width
        self.heads = heads
        self.data_width = width if data_width is None else data_width
        self.c_q = nn.Linear(width, width, device=device, dtype=dtype)
        self.c_kv = nn.Linear(self.data_width, width * 2, device=device, dtype=dtype)
        self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
        self.attention = QKVMultiheadCrossAttention(
            device=device, dtype=dtype, heads=heads, n_ctx=n_ctx, n_data=n_data
        )
        init_linear(self.c_q, init_scale)
        init_linear(self.c_kv, init_scale)
        init_linear(self.c_proj, init_scale)

    def forward(self, x, data):
        x = self.c_q(x)
        data = self.c_kv(data)
        x = checkpoint(self.attention, (x, data), (), True)
        x = self.c_proj(x)
        return x


class QKVMultiheadCrossAttention(nn.Module):
    def __init__(
        self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int, n_data: int
    ):
        super().__init__()
        self.device = device
        self.dtype = dtype
        self.heads = heads
        self.n_ctx = n_ctx
        self.n_data = n_data

    def forward(self, q, kv):
        _, n_ctx, _ = q.shape
        bs, n_data, width = kv.shape
        attn_ch = width // self.heads // 2
        scale = 1 / math.sqrt(math.sqrt(attn_ch))
        q = q.view(bs, n_ctx, self.heads, -1)
        kv = kv.view(bs, n_data, self.heads, -1)
        k, v = torch.split(kv, attn_ch, dim=-1)
        weight = torch.einsum(
            "bthc,bshc->bhts", q * scale, k * scale
        )  # More stable with f16 than dividing afterwards
        wdtype = weight.dtype
        weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
        return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)


class ResidualCrossAttentionBlock(nn.Module):
    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        n_ctx: int,
        n_data: int,
        width: int,
        heads: int,
        data_width: Optional[int] = None,
        init_scale: float = 1.0,
    ):
        super().__init__()

        if data_width is None:
            data_width = width

        self.attn = MultiheadCrossAttention(
            device=device,
            dtype=dtype,
            n_ctx=n_ctx,
            n_data=n_data,
            width=width,
            heads=heads,
            data_width=data_width,
            init_scale=init_scale,
        )
        self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
        self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype)
        self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
        self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype)

    def forward(self, x: torch.Tensor, data: torch.Tensor):
        x = x + self.attn(self.ln_1(x), self.ln_2(data))
        x = x + self.mlp(self.ln_3(x))
        return x


class SimplePerceiver(nn.Module):
    """
    Only does cross attention
    """

    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        n_ctx: int,
        n_data: int,
        width: int,
        layers: int,
        heads: int,
        init_scale: float = 0.25,
        data_width: Optional[int] = None,
    ):
        super().__init__()
        self.n_ctx = n_ctx
        self.width = width
        self.layers = layers
        init_scale = init_scale * math.sqrt(1.0 / width)
        self.resblocks = nn.ModuleList(
            [
                ResidualCrossAttentionBlock(
                    device=device,
                    dtype=dtype,
                    n_ctx=n_ctx,
                    n_data=n_data,
                    width=width,
                    heads=heads,
                    init_scale=init_scale,
                    data_width=data_width,
                )
                for _ in range(layers)
            ]
        )

    def forward(self, x: torch.Tensor, data: torch.Tensor):
        for block in self.resblocks:
            x = block(x, data)
        return x


class PointDiffusionPerceiver(nn.Module):
    def __init__(
        self,
        *,
        device: torch.device,
        dtype: torch.dtype,
        input_channels: int = 3,
        output_channels: int = 3,
        n_ctx: int = 1024,
        n_latent: int = 128,
        width: int = 512,
        encoder_layers: int = 12,
        latent_layers: int = 12,
        decoder_layers: int = 12,
        heads: int = 8,
        init_scale: float = 0.25,
    ):
        super().__init__()
        self.time_embed = MLP(
            device=device, dtype=dtype, width=width, init_scale=init_scale * math.sqrt(1.0 / width)
        )
        self.latent_embed = MLP(
            device=device, dtype=dtype, width=width, init_scale=init_scale * math.sqrt(1.0 / width)
        )
        self.n_latent = n_latent

        self.ln_pre = nn.LayerNorm(width, device=device, dtype=dtype)
        self.encoder = SimplePerceiver(
            device=device,
            dtype=dtype,
            n_ctx=n_latent,
            n_data=n_ctx,
            width=width,
            layers=encoder_layers,
            heads=heads,
            init_scale=init_scale,
        )
        self.processor = Transformer(
            device=device,
            dtype=dtype,
            n_ctx=n_latent,
            width=width,
            layers=latent_layers,
            heads=heads,
            init_scale=init_scale,
        )
        self.decoder = SimplePerceiver(
            device=device,
            dtype=dtype,
            n_ctx=n_ctx,
            n_data=n_latent,
            width=width,
            layers=decoder_layers,
            heads=heads,
            init_scale=init_scale,
        )
        self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
        self.input_proj = nn.Linear(input_channels, width, device=device, dtype=dtype)
        self.output_proj = nn.Linear(width, output_channels, device=device, dtype=dtype)
        with torch.no_grad():
            self.output_proj.weight.zero_()
            self.output_proj.bias.zero_()

    def forward(self, x: torch.Tensor, t: torch.Tensor):
        """
        :param x: an [N x C x T] tensor.
        :param t: an [N] tensor.
        :return: an [N x C' x T] tensor.
        """
        assert x.shape[-1] == self.decoder.n_ctx
        t_embed = self.time_embed(timestep_embedding(t, self.encoder.width))
        data = self.input_proj(x.permute(0, 2, 1)) + t_embed[:, None]
        data = self.ln_pre(data)

        l = torch.arange(self.n_latent).to(x.device)
        h = self.latent_embed(timestep_embedding(l, self.decoder.width))
        h = h.unsqueeze(0).repeat(x.shape[0], 1, 1)

        h = self.encoder(h, data)
        h = self.processor(h)
        h = self.decoder(data, h)
        h = self.ln_post(h)
        h = self.output_proj(h)
        return h.permute(0, 2, 1)