import warnings warnings.filterwarnings("ignore") from sklearn.metrics import accuracy_score,f1_score from datasets import load_dataset from tqdm import tqdm import datasets import torch dic = { 0:"negative", 1:'neutral', 2:'positive', } def format_example(example: dict) -> dict: context = f"Instruction: {example['instruction']}\n" if example.get("input"): context += f"Input: {example['input']}\n" context += "Answer: " target = example["output"] return {"context": context, "target": target} def change_target(x): if 'positive' in x or 'Positive' in x: return 'positive' elif 'negative' in x or 'Negative' in x: return 'negative' else: return 'neutral' def test_fpb(model, tokenizer, batch_size = 8, prompt_fun = None ): instructions = load_dataset("financial_phrasebank", "sentences_50agree") instructions = instructions["train"] instructions = instructions.train_test_split(seed = 42)['test'] instructions = instructions.to_pandas() instructions.columns = ["input", "output"] instructions["output"] = instructions["output"].apply(lambda x:dic[x]) if prompt_fun is None: instructions["instruction"] = "What is the sentiment of this news? Please choose an answer from {negative/neutral/positive}." else: instructions["instruction"] = instructions.apply(prompt_fun, axis = 1) instructions[["context","target"]] = instructions.apply(format_example, axis = 1, result_type="expand") # print example print(f"\n\nPrompt example:\n{instructions['context'][0]}\n\n") context = instructions['context'].tolist() total_steps = instructions.shape[0]//batch_size + 1 print(f"Total len: {len(context)}. Batchsize: {batch_size}. Total steps: {total_steps}") out_text_list = [] for i in tqdm(range(total_steps)): tmp_context = context[i* batch_size:(i+1)* batch_size] tokens = tokenizer(tmp_context, return_tensors='pt', padding=True, max_length=512) for k in tokens.keys(): tokens[k] = tokens[k].cuda() res = model.generate(**tokens, max_length=512) res_sentences = [tokenizer.decode(i) for i in res] out_text = [o.split("Answer: ")[1] for o in res_sentences] out_text_list += out_text torch.cuda.empty_cache() instructions["out_text"] = out_text_list instructions["new_target"] = instructions["target"].apply(change_target) instructions["new_out"] = instructions["out_text"].apply(change_target) acc = accuracy_score(instructions["new_target"], instructions["new_out"]) f1_macro = f1_score(instructions["new_target"], instructions["new_out"], average = "macro") f1_micro = f1_score(instructions["new_target"], instructions["new_out"], average = "micro") f1_weighted = f1_score(instructions["new_target"], instructions["new_out"], average = "weighted") print(f"Acc: {acc}. F1 macro: {f1_macro}. F1 micro: {f1_micro}. F1 weighted (BloombergGPT): {f1_weighted}. ") return instructions