from sklearn.metrics import accuracy_score, f1_score, classification_report from datasets import load_dataset, load_from_disk from tqdm import tqdm import datasets import torch from torch.utils.data import DataLoader from functools import partial from pathlib import Path from fingpt.FinGPT_Benchmark.utils import * import sys sys.path.append('../') def binary2multi(dataset): pred, label = [], [] tmp_pred, tmp_label = [], [] for i, row in dataset.iterrows(): tmp_pred.append(row['pred']) tmp_label.append(row['label']) if (i + 1) % 9 == 0: pred.append(tmp_pred) label.append(tmp_label) tmp_pred, tmp_label = [], [] return pred, label def map_output(feature): pred = 1 if 'yes' in feature['out_text'].lower() else 0 label = 1 if 'yes' in feature['output'].lower() else 0 return {'label': label, 'pred': pred} def test_headline(args, model, tokenizer): # dataset = load_from_disk('../data/fingpt-headline')['test'] dataset = load_from_disk(Path(__file__).parent.parent / 'data/fingpt-headline-instruct')['test'] dataset = dataset.map(partial(test_mapping, args), load_from_cache_file=False) def collate_fn(batch): inputs = tokenizer( [f["prompt"] for f in batch], return_tensors='pt', padding=True, max_length=args.max_length, return_token_type_ids=False ) return inputs dataloader = DataLoader(dataset, batch_size=args.batch_size, collate_fn=collate_fn, shuffle=False) out_text_list = [] log_interval = len(dataloader) // 5 for idx, inputs in enumerate(tqdm(dataloader)): inputs = {key: value.to(model.device) for key, value in inputs.items()} res = model.generate(**inputs, max_length=args.max_length, eos_token_id=tokenizer.eos_token_id) res_sentences = [tokenizer.decode(i, skip_special_tokens=True) for i in res] tqdm.write(f'{idx}: {res_sentences[0]}') if (idx + 1) % log_interval == 0: tqdm.write(f'{idx}: {res_sentences[0]}') out_text = [o.split("Answer: ")[1] for o in res_sentences] out_text_list += out_text torch.cuda.empty_cache() dataset = dataset.add_column("out_text", out_text_list) dataset = dataset.map(map_output, load_from_cache_file=False) dataset = dataset.to_pandas() print(dataset) dataset.to_csv('tmp.csv') # binary acc = accuracy_score(dataset["label"], dataset["pred"]) f1 = f1_score(dataset["label"], dataset["pred"], average="binary") # multi-class pred, label = binary2multi(dataset) print(f"\n|| Acc: {acc} || F1 binary: {f1} ||\n") print(classification_report(label, pred, digits=4, target_names=['price or not', 'price up', 'price stable', 'price down', 'price past', 'price future', 'event past', 'event future', 'asset comp'])) return dataset