Sigrid De los Santos
Remove remaining binary file for Hugging Face
9df4cc0
import warnings
warnings.filterwarnings("ignore")
from sklearn.metrics import accuracy_score,f1_score
from datasets import load_dataset
from tqdm import tqdm
import datasets
import torch
def format_example(example: dict) -> dict:
context = f"Instruction: {example['instruction']}\n"
if example.get("input"):
context += f"Input: {example['input']}\n"
context += "Answer: "
target = example["output"]
return {"context": context, "target": target}
def add_instructions(x):
if x.format == "post":
return "What is the sentiment of this tweet? Please choose an answer from {negative/neutral/positive}."
else:
return "What is the sentiment of this news? Please choose an answer from {negative/neutral/positive}."
def make_label(x):
if x < - 0.1: return "negative"
elif x >=-0.1 and x < 0.1: return "neutral"
elif x >= 0.1: return "positive"
def change_target(x):
if 'positive' in x or 'Positive' in x:
return 'positive'
elif 'negative' in x or 'Negative' in x:
return 'negative'
else:
return 'neutral'
def test_fiqa(model, tokenizer, batch_size = 8, prompt_fun = None ):
dataset = load_dataset('pauri32/fiqa-2018')
dataset = datasets.concatenate_datasets([dataset["train"], dataset["validation"] ,dataset["test"] ])
dataset = dataset.train_test_split(0.226, seed = 42)['test']
dataset = dataset.to_pandas()
dataset["output"] = dataset.sentiment_score.apply(make_label)
if prompt_fun is None:
dataset["instruction"] = "What is the sentiment of this news? Please choose an answer from {negative/neutral/positive}."
else:
dataset["instruction"] = dataset.apply(prompt_fun, axis = 1)
dataset = dataset[['sentence', 'output',"instruction"]]
dataset.columns = ["input", "output","instruction"]
dataset[["context","target"]] = dataset.apply(format_example, axis = 1, result_type="expand")
# print example
print(f"\n\nPrompt example:\n{dataset['context'][0]}\n\n")
context = dataset['context'].tolist()
total_steps = dataset.shape[0]//batch_size + 1
print(f"Total len: {len(context)}. Batchsize: {batch_size}. Total steps: {total_steps}")
out_text_list = []
for i in tqdm(range(total_steps)):
tmp_context = context[i* batch_size:(i+1)* batch_size]
tokens = tokenizer(tmp_context, return_tensors='pt', padding=True, max_length=512)
# tokens.pop('token_type_ids')
for k in tokens.keys():
tokens[k] = tokens[k].cuda()
res = model.generate(**tokens, max_length=512)
res_sentences = [tokenizer.decode(i) for i in res]
out_text = [o.split("Answer: ")[1] for o in res_sentences]
out_text_list += out_text
torch.cuda.empty_cache()
dataset["out_text"] = out_text_list
dataset["new_target"] = dataset["target"].apply(change_target)
dataset["new_out"] = dataset["out_text"].apply(change_target)
acc = accuracy_score(dataset["new_target"], dataset["new_out"])
f1_macro = f1_score(dataset["new_target"], dataset["new_out"], average = "macro")
f1_micro = f1_score(dataset["new_target"], dataset["new_out"], average = "micro")
f1_weighted = f1_score(dataset["new_target"], dataset["new_out"], average = "weighted")
print(f"Acc: {acc}. F1 macro: {f1_macro}. F1 micro: {f1_micro}. F1 weighted (BloombergGPT): {f1_weighted}. ")
return dataset